Let L be the linear operator on R? defined by L(x1, x2) = (2x1 – 3x2, x1 + 4x2)*:\\ i). Find the matrix A representing L with respect to the standard basis for R?. ii). Find the matrix B representing L with respect to S = {(1, 1), (0, 1)}. iii). Find an invertible matrix P such that B = P-'AP. \ Türkçesi: L, IR? üzerinde L(x1, ¤2) = (2æ1 – 3x2, ¤1 + 4x2)* şeklinde tanımlanan bir lineer dönüşüm olsun: i). R? nin standart tabanına göre L nin temsil matrisi A yı bulunuz. ii). S = {(1,1), (0, 1)} tabanına göre L nin temsil matrisi B yi bulunuz. ii). B = P-'AP sağlayan tersininr P matrisini bulunuz. -1 -3 ‚P 2 1 0 -3 ,B 4 A 3 [ 2 A : -3 ,B 4 3 ,P 1 1 1 -3 ,B 2 1 , Р 1 A -1 1 0 2. ,P= 2 2 -3 ‚B 4 A 3 6 7 2 -3 ,B 4 -3 ,P 1 A 6 4.
Let L be the linear operator on R? defined by L(x1, x2) = (2x1 – 3x2, x1 + 4x2)*:\\ i). Find the matrix A representing L with respect to the standard basis for R?. ii). Find the matrix B representing L with respect to S = {(1, 1), (0, 1)}. iii). Find an invertible matrix P such that B = P-'AP. \ Türkçesi: L, IR? üzerinde L(x1, ¤2) = (2æ1 – 3x2, ¤1 + 4x2)* şeklinde tanımlanan bir lineer dönüşüm olsun: i). R? nin standart tabanına göre L nin temsil matrisi A yı bulunuz. ii). S = {(1,1), (0, 1)} tabanına göre L nin temsil matrisi B yi bulunuz. ii). B = P-'AP sağlayan tersininr P matrisini bulunuz. -1 -3 ‚P 2 1 0 -3 ,B 4 A 3 [ 2 A : -3 ,B 4 3 ,P 1 1 1 -3 ,B 2 1 , Р 1 A -1 1 0 2. ,P= 2 2 -3 ‚B 4 A 3 6 7 2 -3 ,B 4 -3 ,P 1 A 6 4.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let L be the linear operator on R? defined by L(x1, x2) = (2x1 – 3x2, ¤1+ 4x2)*:\\
i). Find the matrix A representing L with respect to the standard basis for R?.
i). Find the matrix B representing L with respect to S = {(1,1), (0, 1)}.
iii). Find an invertible matrix P such that B = P-'AP. \\
Türkçesi: L, IR? üzerinde L(x1, 22) = (2x1 – 3x2, x1 + 4x2)* şeklinde tanımlanan bir lineer dönüşüm olsun:
i). R? nin standart tabanına göre L nin temsil matrisi A yı bulunuz.
i). S = {(1,1), (0, 1)} tabanına göre L nin temsil matrisi B yi bulunuz.
ii). B = P 'AP sağlayan tersininr P matrisini bulunuz.
3]
, В
4
3
1.
3]
A
3
3]
,B
4
[:
3
‚P
1
A
2 1
3
‚B
4
1
A
,P
3]
B=
4
2
A =
2 07
1
,P
3
,B
4
3
,P
7
-1
A
=
2.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd5cad4ce-714a-41b1-b231-1eb78246dc89%2F84600bb6-9b8b-409c-a9f5-2d136bc72d14%2Fjmtiv9e_processed.png&w=3840&q=75)
Transcribed Image Text:Let L be the linear operator on R? defined by L(x1, x2) = (2x1 – 3x2, ¤1+ 4x2)*:\\
i). Find the matrix A representing L with respect to the standard basis for R?.
i). Find the matrix B representing L with respect to S = {(1,1), (0, 1)}.
iii). Find an invertible matrix P such that B = P-'AP. \\
Türkçesi: L, IR? üzerinde L(x1, 22) = (2x1 – 3x2, x1 + 4x2)* şeklinde tanımlanan bir lineer dönüşüm olsun:
i). R? nin standart tabanına göre L nin temsil matrisi A yı bulunuz.
i). S = {(1,1), (0, 1)} tabanına göre L nin temsil matrisi B yi bulunuz.
ii). B = P 'AP sağlayan tersininr P matrisini bulunuz.
3]
, В
4
3
1.
3]
A
3
3]
,B
4
[:
3
‚P
1
A
2 1
3
‚B
4
1
A
,P
3]
B=
4
2
A =
2 07
1
,P
3
,B
4
3
,P
7
-1
A
=
2.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)