Let k(x) = (4x²)g(x)h(x). Given the following table of values, find k' (1). -1 1 1 0 1 -4 0 2 1 -1 Provide your answer below: k'(1) = x h(x) g(x) h'(x) g'(x) 0 -3 3 3 0 3 3 0 -2 -2

College Algebra
7th Edition
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:James Stewart, Lothar Redlin, Saleem Watson
Chapter4: Exponential And Logarithmic Functions
Section: Chapter Questions
Problem 3CC: If xis large, which function grows faster, f(x)=2x or g(x)=x2?
Question
Let k(x) = (4x²)g(x)h(x). Given the following table of values, find k' (1).
-1
1
1
0
1
-4
0
2
1
-1
Provide your answer below:
k' (1) =
x
h(x)
g(x)
h'(x)
g'(x)
0
-3
3
3
0
3
3
0
-2
-2
Transcribed Image Text:Let k(x) = (4x²)g(x)h(x). Given the following table of values, find k' (1). -1 1 1 0 1 -4 0 2 1 -1 Provide your answer below: k' (1) = x h(x) g(x) h'(x) g'(x) 0 -3 3 3 0 3 3 0 -2 -2
Expert Solution
steps

Step by step

Solved in 3 steps with 7 images

Blurred answer