Let I (a, b) be a bounded open interval and f: I R be a monotone increasing function on I. (i) If f is bounded above on I, then lim f(x) = sup f(x). xE (a,b) %3D (ii) If f is bounded below on I, lim f(x) = x a+ inf f(x). xE (a,b) then

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Prove. ii.

Let I = (a, 6) be a bounded open interval and f :I →
%3D
R be a monotone increasing function on I.
(i) If f is bounded above on I, then lim f(x)
sup f(x).
πε (α,)
x→b-
(ii) If f is bounded below on I, then lim f(x) :
inf f(x).
xE (a,b)
x-- a+
(iii) If f is unbounded above on I, then lirn f(x)
(iv) If f is unbounded below on I, then lim f (x)
X -- a+
Transcribed Image Text:Let I = (a, 6) be a bounded open interval and f :I → %3D R be a monotone increasing function on I. (i) If f is bounded above on I, then lim f(x) sup f(x). πε (α,) x→b- (ii) If f is bounded below on I, then lim f(x) : inf f(x). xE (a,b) x-- a+ (iii) If f is unbounded above on I, then lirn f(x) (iv) If f is unbounded below on I, then lim f (x) X -- a+
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,