Let h(x) = f(x)g(x). If f(x) = -5a2 +5x- 4, g(2) = 3, and g'(2) = -4, what is h'(2)? %3D %3D Provide your answer below: W(2) = %3D

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Let \( h(x) = f(x)g(x) \). If \( f(x) = -5x^2 + 5x - 4 \), \( g(2) = 3 \), and \( g'(2) = -4 \), what is \( h'(2) \)?

**Provide your answer below:**

\( h'(2) = \) \[\_\_\_\_\_\] 

**Explanation:**

This problem involves finding the derivative of a product of functions using the product rule. The product rule states:

\[
h'(x) = f'(x)g(x) + f(x)g'(x)
\]

Given:
- \( f(x) = -5x^2 + 5x - 4 \)
- \( g(2) = 3 \)
- \( g'(2) = -4 \)

First, find \( f'(x) \):
\[
f'(x) = \frac{d}{dx}(-5x^2 + 5x - 4) = -10x + 5
\]

Evaluate \( f'(2) \):
\[
f'(2) = -10(2) + 5 = -20 + 5 = -15
\]

Use the product rule to find \( h'(2) \):
\[
h'(2) = f'(2)g(2) + f(2)g'(2)
\]

Given \( g(2) = 3 \) and \( g'(2) = -4 \). Calculate \( f(2) \):
\[
f(2) = -5(2)^2 + 5(2) - 4 = -20 + 10 - 4 = -14
\]

Substitute the values into the product rule formula:
\[
h'(2) = (-15)(3) + (-14)(-4) = -45 + 56 = 11
\]

**Answer:**

\( h'(2) = 11 \)
Transcribed Image Text:**Problem Statement:** Let \( h(x) = f(x)g(x) \). If \( f(x) = -5x^2 + 5x - 4 \), \( g(2) = 3 \), and \( g'(2) = -4 \), what is \( h'(2) \)? **Provide your answer below:** \( h'(2) = \) \[\_\_\_\_\_\] **Explanation:** This problem involves finding the derivative of a product of functions using the product rule. The product rule states: \[ h'(x) = f'(x)g(x) + f(x)g'(x) \] Given: - \( f(x) = -5x^2 + 5x - 4 \) - \( g(2) = 3 \) - \( g'(2) = -4 \) First, find \( f'(x) \): \[ f'(x) = \frac{d}{dx}(-5x^2 + 5x - 4) = -10x + 5 \] Evaluate \( f'(2) \): \[ f'(2) = -10(2) + 5 = -20 + 5 = -15 \] Use the product rule to find \( h'(2) \): \[ h'(2) = f'(2)g(2) + f(2)g'(2) \] Given \( g(2) = 3 \) and \( g'(2) = -4 \). Calculate \( f(2) \): \[ f(2) = -5(2)^2 + 5(2) - 4 = -20 + 10 - 4 = -14 \] Substitute the values into the product rule formula: \[ h'(2) = (-15)(3) + (-14)(-4) = -45 + 56 = 11 \] **Answer:** \( h'(2) = 11 \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning