Let -HHI 4 u1 = , u2 uz = 3 3 Compute each of the following. (A graphing calculator is recommended.) (a) u2 · u3 32 (b) ||u1|| V 39 (c) ||3u1 + 2u3|| V955 (d) ||5u1 - 4u2 - u3| V1479

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### Vector Operations

Let the vectors be defined as follows:

\[ \mathbf{u_1} = \begin{bmatrix} 5 \\ 0 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{u_2} = \begin{bmatrix} 2 \\ 8 \\ 4 \\ 0 \end{bmatrix}, \quad \mathbf{u_3} = \begin{bmatrix} -4 \\ 0 \\ 3 \\ -3 \end{bmatrix} \]

Compute each of the following. (A graphing calculator is recommended.)

#### (a) Compute \( \mathbf{u_2} \cdot \mathbf{u_3} \)

- **Solution:** \( 32 \) ✔️

#### (b) Compute \( \| \mathbf{u_1} \| \) 

- **Solution:** \( \sqrt{39} \) ✔️

#### (c) Compute \( \| 3 \mathbf{u_1} + 2 \mathbf{u_3} \| \)

- **Solution Attempt:** \( \sqrt{955} \) ❌

#### (d) Compute \( \| 5 \mathbf{u_1} - 4 \mathbf{u_2} - \mathbf{u_3} \| \)

- **Solution Attempt:** \( \sqrt{1479} \) ❌

**Explanation of Calculations:**

- **Dot Product:** The dot product is calculated as the sum of the products of corresponding entries of the two sequences of numbers.
  
- **Magnitude (Norm):** The magnitude of vector \( \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} \) is calculated by \( \sqrt{v_1^2 + v_2^2 + v_3^2 + v_4^2} \). 

If you're computing (c) or (d), be sure to carefully combine the vectors as specified before calculating the norms correctly.
Transcribed Image Text:### Vector Operations Let the vectors be defined as follows: \[ \mathbf{u_1} = \begin{bmatrix} 5 \\ 0 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{u_2} = \begin{bmatrix} 2 \\ 8 \\ 4 \\ 0 \end{bmatrix}, \quad \mathbf{u_3} = \begin{bmatrix} -4 \\ 0 \\ 3 \\ -3 \end{bmatrix} \] Compute each of the following. (A graphing calculator is recommended.) #### (a) Compute \( \mathbf{u_2} \cdot \mathbf{u_3} \) - **Solution:** \( 32 \) ✔️ #### (b) Compute \( \| \mathbf{u_1} \| \) - **Solution:** \( \sqrt{39} \) ✔️ #### (c) Compute \( \| 3 \mathbf{u_1} + 2 \mathbf{u_3} \| \) - **Solution Attempt:** \( \sqrt{955} \) ❌ #### (d) Compute \( \| 5 \mathbf{u_1} - 4 \mathbf{u_2} - \mathbf{u_3} \| \) - **Solution Attempt:** \( \sqrt{1479} \) ❌ **Explanation of Calculations:** - **Dot Product:** The dot product is calculated as the sum of the products of corresponding entries of the two sequences of numbers. - **Magnitude (Norm):** The magnitude of vector \( \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} \) is calculated by \( \sqrt{v_1^2 + v_2^2 + v_3^2 + v_4^2} \). If you're computing (c) or (d), be sure to carefully combine the vectors as specified before calculating the norms correctly.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,