Let H 5 {0, ±3, ±6, ±9, . . .}. Find all the left cosets of H in Z.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let H 5 {0, ±3, ±6, ±9, . . .}. Find all the left cosets of H in Z.

Expert Solution
Step 1

The given subset H=0, ±3, ±6, ±9,.....

We have to find all the left cosets of H in .

Step 2

Left coset:

If G be any group and H is any nonempty subset of G.

The left-coset of H is aH=ah|hH, for any aG.

Now,

H=0, ±3, ±6, ±9,....=30, ±1, ±2, ±3,....=3H=3k|k

The classes of n are , +1, +2,......,+n-1.

From this 3k|k, 3k+1|k, 3k+2|k

For x=3k, k:

x+H=3k+0, ±3, ±6, ±9,....3k0, ±3, ±6, ±9,....=Hx+H=H

i.e., aH=H if aH

For x=3k+1, k:

x+H=3k+1+0, ±3, ±6, ±9,....x+H=1+0, ±3, ±6, ±9,....x+H=1+H

For x=3k+2, k:

x+H=3k+2+0, ±3, ±6, ±9,....x+H=2+0, ±3, ±6, ±9,....x+H=2+H

Therefore, the left coset of H in  are H, 1+H, 2+H.

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Groups
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,