Let γ be a real constant with y² 1 for the parametric functional S[x, y] = fjª dt [√ಠ+ 2y àÿ + ÿj² − X(xÿ − ±y)], \>0, 0 - - with the boundary conditions x(0) = y(0) = 0, x(1) = R > 0 and y(1) = 0. (1 - y²)x' = D-X (1-2) y' = C + Y where D = 2(c-yd), X = 2λ(yx + y), where C = 2(d- yc), Y = 2λ(x + yy), where dx dy x' = y' y = ds' ds' x²+Y2-2yXY - 4c(1-2)x + 4d(1-2)Y +C² + D² + 2xCD = (1 − y²)². - C² + 2xCD + D² = (1 − y²)² -
Let γ be a real constant with y² 1 for the parametric functional S[x, y] = fjª dt [√ಠ+ 2y àÿ + ÿj² − X(xÿ − ±y)], \>0, 0 - - with the boundary conditions x(0) = y(0) = 0, x(1) = R > 0 and y(1) = 0. (1 - y²)x' = D-X (1-2) y' = C + Y where D = 2(c-yd), X = 2λ(yx + y), where C = 2(d- yc), Y = 2λ(x + yy), where dx dy x' = y' y = ds' ds' x²+Y2-2yXY - 4c(1-2)x + 4d(1-2)Y +C² + D² + 2xCD = (1 − y²)². - C² + 2xCD + D² = (1 − y²)² -
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Show that C=-λR.
![Let γ be a real constant with y² 1 for the parametric functional
S[x, y] = fjª dt [√ಠ+ 2y àÿ + ÿj² − X(xÿ − ±y)], \>0,
0
-
-
with the boundary conditions x(0) = y(0) = 0, x(1) = R > 0 and y(1) = 0.
(1 - y²)x' = D-X
(1-2) y' = C + Y
where D = 2(c-yd), X = 2λ(yx + y),
where C = 2(d- yc), Y = 2λ(x + yy),
where
dx
dy
x'
=
y'
y =
ds'
ds'
x²+Y2-2yXY - 4c(1-2)x + 4d(1-2)Y
+C² + D² + 2xCD = (1 − y²)².
-
C² + 2xCD + D² = (1 − y²)²
-](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa6c8ed7d-75cc-4e27-869e-3ad6a1efc0b4%2Fb8e275ba-b18a-449b-96e3-1523c30baee3%2F4zf2mli_processed.png&w=3840&q=75)
Transcribed Image Text:Let γ be a real constant with y² 1 for the parametric functional
S[x, y] = fjª dt [√ಠ+ 2y àÿ + ÿj² − X(xÿ − ±y)], \>0,
0
-
-
with the boundary conditions x(0) = y(0) = 0, x(1) = R > 0 and y(1) = 0.
(1 - y²)x' = D-X
(1-2) y' = C + Y
where D = 2(c-yd), X = 2λ(yx + y),
where C = 2(d- yc), Y = 2λ(x + yy),
where
dx
dy
x'
=
y'
y =
ds'
ds'
x²+Y2-2yXY - 4c(1-2)x + 4d(1-2)Y
+C² + D² + 2xCD = (1 − y²)².
-
C² + 2xCD + D² = (1 − y²)²
-
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 1 steps with 2 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning