Let f(z² + y², zy, z² - y²) be a differentiable function. What is the value of the second order partial derivative fy? O A 42²f11+ y²f2 +42²f3+ 4zyf12 +82²f13 + 4zyf23 +251 +2/3 OB. 4y2 fu+1²f22+4y²f33 + 4zyf12- 8y2f13-4ryf23 +2f1-2f3 OC 4y²fu+1²f₂ + 4y²f3+ 4zyf12- 8y2f13-4zyf23 +2f1 +2f2-2f3 OD. 2y2f1+z²f22 + 2y²f3+2ryf12- 4y²f13-2ryf +2f1-2f3 OE 2z²f11+ y²f₂₂ + 2x²ƒ33 + 2xyf12 +41²f13 + 2xyf23 +2f1 +2f3 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
5
Let f(x² + y², zy, ² - y²) be a differentiable function. What is the value of the second order partial derivative f?
OA 42²f11+ y²f22 +42²f33 + 4zyf12 + 8r²f13 + 4xyf23 +2f₁ + 2f3
O B. 4y²fu+1²f22 + 4y²f33+ 4zyf12- 8y2f13-4cyf23+2f1-2f3
OC 4y²f₁ +2²f₂2+ 4y²f₁3 + 4xyf12- 8y²f13-4zyf23 +2f1 +2f₂-2f3
O D. 2y²fu+z²f22 + 2y²f33 +2zyf12 - 4y²f13-2xyfzs +2f1-2f3
OE 27²f11+ y²ƒ₂2 +21² ƒ33 + 2xyf12 +41²f13 + 2xyf23 +2f1 + 2f3
Transcribed Image Text:5 Let f(x² + y², zy, ² - y²) be a differentiable function. What is the value of the second order partial derivative f? OA 42²f11+ y²f22 +42²f33 + 4zyf12 + 8r²f13 + 4xyf23 +2f₁ + 2f3 O B. 4y²fu+1²f22 + 4y²f33+ 4zyf12- 8y2f13-4cyf23+2f1-2f3 OC 4y²f₁ +2²f₂2+ 4y²f₁3 + 4xyf12- 8y²f13-4zyf23 +2f1 +2f₂-2f3 O D. 2y²fu+z²f22 + 2y²f33 +2zyf12 - 4y²f13-2xyfzs +2f1-2f3 OE 27²f11+ y²ƒ₂2 +21² ƒ33 + 2xyf12 +41²f13 + 2xyf23 +2f1 + 2f3
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,