Let f(z) = u(x, y)+ i v(x, y) = U(r, 0) + iV (r, 0). By exploiting the relations x = r cos 0 , y = r sin 0 , we proved that if the Cauchy-Riemann equations hold true, that is, Ux = Vy Uy = -Vx (1) then, r U, = V9 r V, = -Ug . (2) One can actually show that the viceversa is also true, that is, if f satisfies (2) then f satisfies also (1). The equations in (2) are the polar form of the Cauchy-Riemann equations. Recalling that f'(z) = ux + i vx, check that f'(2) = e-iº (Ur + i V;).
Let f(z) = u(x, y)+ i v(x, y) = U(r, 0) + iV (r, 0). By exploiting the relations x = r cos 0 , y = r sin 0 , we proved that if the Cauchy-Riemann equations hold true, that is, Ux = Vy Uy = -Vx (1) then, r U, = V9 r V, = -Ug . (2) One can actually show that the viceversa is also true, that is, if f satisfies (2) then f satisfies also (1). The equations in (2) are the polar form of the Cauchy-Riemann equations. Recalling that f'(z) = ux + i vx, check that f'(2) = e-iº (Ur + i V;).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Could you explain how to show this in detail?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,