Let f(x, y) = (x° + ay´, xʻy°, 2x+by), g(u,v,w) = (3u² + bv² + w°, uvw). Find the derivative of f(g(u, v, w)) using the chain rule.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Let f(x, y) = (x³ + ay², x²y°, 2x + by), g(u, v, w) = (3u² + bv² + w*, uvw).
Find the derivative of f(g(u, v, w)) using the chain rule.
Transcribed Image Text:Let f(x, y) = (x³ + ay², x²y°, 2x + by), g(u, v, w) = (3u² + bv² + w*, uvw). Find the derivative of f(g(u, v, w)) using the chain rule.
Expert Solution
Given functions f and g such that

f(x,y)=(x3+ay2,x2y3,2x+by)g(u,v,w)=(3u2+bv2+w3,uvw)To Find: Derivative of f(g(u,v,w)) using the chain rule.

Note:

We use the chain rule to differentiate composite function:If f and g are both differentiable and F=f°g(i.e.F(x)=f(g(x))) is the composite function,then F'(x)=f'(g(x))g'(x)Now, derivative of a multivariable vector function is given as:Fxi=F1xi,F2xi,,Fmxi

We begin with finding the composite function.

F=fg  =f(g(u,v,w))   =f((3u2+bv2+w3,uvw))    =((3u2+bv2+w3)3+a(uvw)2,(3u2+bv2+w3)2(uvw)3,2(3u2+bv2+w3)+b(uvw))

Next, we find the derivative of the f(g(u,v,w)) using the chain rule.Let F1=(3u2+bv2+w3)3+a(uvw)2, F2=(3u2+bv2+w3)2(uvw)3, F3=2(3u2+bv2+w3)+b(uvw)Fu=F1u,F2u,F3uFv=F1v,F2v,F3vFw=F1w,F2w,F3w

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Knowledge Booster
Chain Rule
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,