Let f(x) f-¹(-2) = x + 3 x + 6

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
### Understanding and Finding the Inverse Function

#### Given Function:
Let 
\[ f(x) = \frac{x + 3}{x + 6} \]

To determine \( f^{-1}(-2) \), we first need to find the inverse of the function \( f(x) \).

#### Steps to Find the Inverse:

1. **Express \( y \) in terms of \( x \):**
\[ y = \frac{x + 3}{x + 6} \]

2. **Swap \( x \) and \( y \):**
\[ x = \frac{y + 3}{y + 6} \]

3. **Solve for \( y \) in terms of \( x \):**
\[ x(y + 6) = y + 3 \]
\[ xy + 6x = y + 3 \]
\[ xy - y = 3 - 6x \]
\[ y(x - 1) = 3 - 6x \]
\[ y = \frac{3 - 6x}{x - 1} \]

So, the inverse function \( f^{-1}(x) \) is:
\[ f^{-1}(x) = \frac{3 - 6x}{x - 1} \]

#### Evaluate \( f^{-1}(-2) \):

Substitute \( -2 \) into the inverse function:
\[ f^{-1}(-2) = \frac{3 - 6(-2)}{-2 - 1} \]
\[ f^{-1}(-2) = \frac{3 + 12}{-3} \]
\[ f^{-1}(-2) = \frac{15}{-3} \]
\[ f^{-1}(-2) = -5 \]

Therefore,
\[ f^{-1}(-2) = -5 \]

By working through these steps, we determined that \( f^{-1}(-2) \) equals \(-5\).
Transcribed Image Text:### Understanding and Finding the Inverse Function #### Given Function: Let \[ f(x) = \frac{x + 3}{x + 6} \] To determine \( f^{-1}(-2) \), we first need to find the inverse of the function \( f(x) \). #### Steps to Find the Inverse: 1. **Express \( y \) in terms of \( x \):** \[ y = \frac{x + 3}{x + 6} \] 2. **Swap \( x \) and \( y \):** \[ x = \frac{y + 3}{y + 6} \] 3. **Solve for \( y \) in terms of \( x \):** \[ x(y + 6) = y + 3 \] \[ xy + 6x = y + 3 \] \[ xy - y = 3 - 6x \] \[ y(x - 1) = 3 - 6x \] \[ y = \frac{3 - 6x}{x - 1} \] So, the inverse function \( f^{-1}(x) \) is: \[ f^{-1}(x) = \frac{3 - 6x}{x - 1} \] #### Evaluate \( f^{-1}(-2) \): Substitute \( -2 \) into the inverse function: \[ f^{-1}(-2) = \frac{3 - 6(-2)}{-2 - 1} \] \[ f^{-1}(-2) = \frac{3 + 12}{-3} \] \[ f^{-1}(-2) = \frac{15}{-3} \] \[ f^{-1}(-2) = -5 \] Therefore, \[ f^{-1}(-2) = -5 \] By working through these steps, we determined that \( f^{-1}(-2) \) equals \(-5\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning