Let f(x) be a fixed integer polynomial, and let m be a fixed positive integer. Denote the number of solutions to f(x) = k (mod m) by N(k). Prove that m-1 EA ΣN(k) = k=0 ) = m.
Let f(x) be a fixed integer polynomial, and let m be a fixed positive integer. Denote the number of solutions to f(x) = k (mod m) by N(k). Prove that m-1 EA ΣN(k) = k=0 ) = m.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
[Algebraic Cryptography] How do you solve this?
Use the given hint: Let S(k) = {solutions to f(x) = (congruent to) k (mod m) in Z/mZ} where Z is the set of integers
![Let f(x) be a fixed integer polynomial, and let m be a fixed positive integer. Denote the number of solutions to
f(x) = k (mod m) by N(k). Prove that
m-1
ΣN (k) =
k=0
= m.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Faad0f060-0c2f-485d-8d1b-d639003d7506%2F77eae790-f025-4de8-9b86-b1bd5cb1ae71%2F3688bd_processed.png&w=3840&q=75)
Transcribed Image Text:Let f(x) be a fixed integer polynomial, and let m be a fixed positive integer. Denote the number of solutions to
f(x) = k (mod m) by N(k). Prove that
m-1
ΣN (k) =
k=0
= m.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
This follows from basics of set theory. We give all the details in step 2.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)