Let f(x) = axm + am-prm-1 + . . . + a, and g(x) = b,x"+ b,-px"-1 + ... + bo belong to Q[x] and suppose that f(x)g(x) belongs to Z[x]. Prove that a,b; is an integer for every i and j.
Let f(x) = axm + am-prm-1 + . . . + a, and g(x) = b,x"+ b,-px"-1 + ... + bo belong to Q[x] and suppose that f(x)g(x) belongs to Z[x]. Prove that a,b; is an integer for every i and j.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let f(x) = axm + am-prm-1 + . . . + a, and g(x) = b,x"+ b,-px"-1 +
... + bo belong to Q[x] and suppose that f(x)g(x) belongs to Z[x].
Prove that a,b; is an integer for every i and j.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F95581c42-e1ac-43ba-8024-e3c1df3ba832%2F599fbd98-953f-49ad-b5eb-94c30eede508%2Fxd0ax5g.png&w=3840&q=75)
Transcribed Image Text:Let f(x) = axm + am-prm-1 + . . . + a, and g(x) = b,x"+ b,-px"-1 +
... + bo belong to Q[x] and suppose that f(x)g(x) belongs to Z[x].
Prove that a,b; is an integer for every i and j.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given that,
This implies that .
Suppose, .
By Gauss' Lemma, since factors in , so there exists q,r such that:
and,
and,
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)