Let f(x) = and g(x) = - Find and simplify: (f + g)(x) Select one: A. x²+3x-1 x(x-1) B. -x+3x+1 x(x-1) C. x²+3x-1 x²-1 D. -x²+3x-l x²-1 E. x²-3x-1 x(x-1) 1-x

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Mathematics: Functions and Simplification**

---

**Problem Statement:**

Let \( f(x) = \frac{1}{x-1} \) and \( g(x) = \frac{1-x}{x} \).

Find and simplify: \( (f + g)(x) \).

**Multiple Choice Options:**

Select one:

A. \( \frac{x^2 + 3x - 1}{x(x-1)} \)

B. \( \frac{-x^2 + 3x + 1}{x(x-1)} \)

C. \( \frac{x^2 + 3x - 1}{x - 1} \)

D. \( \frac{-x^2 + 3x + 1}{x - 1} \)

E. \( \frac{x^2 - 3x - 1}{x(x-1)} \)

---

**Notes on Function Simplification:**

1. **Function Definitions:**
   
   - \( f(x) = \frac{1}{x-1} \)
   - \( g(x) = \frac{1-x}{x} \)

2. **Combining Functions:**
   To find \( (f + g)(x) \), add the two functions together:
   
   \[
   (f + g)(x) = f(x) + g(x) = \frac{1}{x-1} + \frac{1-x}{x}
   \]
   
3. **Simplification Steps:**
   - Find a common denominator for the two fractions.
   - Combine and simplify the fractions.

This exercise helps students practice combining fractions with different denominators and simplifying rational functions.
Transcribed Image Text:**Mathematics: Functions and Simplification** --- **Problem Statement:** Let \( f(x) = \frac{1}{x-1} \) and \( g(x) = \frac{1-x}{x} \). Find and simplify: \( (f + g)(x) \). **Multiple Choice Options:** Select one: A. \( \frac{x^2 + 3x - 1}{x(x-1)} \) B. \( \frac{-x^2 + 3x + 1}{x(x-1)} \) C. \( \frac{x^2 + 3x - 1}{x - 1} \) D. \( \frac{-x^2 + 3x + 1}{x - 1} \) E. \( \frac{x^2 - 3x - 1}{x(x-1)} \) --- **Notes on Function Simplification:** 1. **Function Definitions:** - \( f(x) = \frac{1}{x-1} \) - \( g(x) = \frac{1-x}{x} \) 2. **Combining Functions:** To find \( (f + g)(x) \), add the two functions together: \[ (f + g)(x) = f(x) + g(x) = \frac{1}{x-1} + \frac{1-x}{x} \] 3. **Simplification Steps:** - Find a common denominator for the two fractions. - Combine and simplify the fractions. This exercise helps students practice combining fractions with different denominators and simplifying rational functions.
### Problem Statement

Consider the functions:
\[ f(x) = \frac{1}{x-1} \]
\[ g(x) = \frac{1-x}{x} \]

Find and simplify the expression:
\[ \left(\frac{g}{f}\right)(x) \]

### Multiple Choice Options

Select one:
- **A.** \(-1\)
- **B.** \(\frac{(x-1)^2}{x}\)
- **C.** \(\frac{1}{x}\)
- **D.** \(\frac{(x-1)^2}{x}\)
- **E.** \(-\frac{1}{x}\)
Transcribed Image Text:### Problem Statement Consider the functions: \[ f(x) = \frac{1}{x-1} \] \[ g(x) = \frac{1-x}{x} \] Find and simplify the expression: \[ \left(\frac{g}{f}\right)(x) \] ### Multiple Choice Options Select one: - **A.** \(-1\) - **B.** \(\frac{(x-1)^2}{x}\) - **C.** \(\frac{1}{x}\) - **D.** \(\frac{(x-1)^2}{x}\) - **E.** \(-\frac{1}{x}\)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education