Let f(x) = 2x - 1 and g(x) = x² - 2x + 1, for xeR. a) Find (gof)(x). b) Determine the Domain and Range of (fog)(x).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

Can someone please help with this asap? Thank you.

**Mathematics Function Composition: Problem Solving**

**Given Functions:**

Let \( f(x) = 2x - 1 \) and \( g(x) = x^2 - 2x + 1 \), for \( x \in \mathbb{R} \).

**Tasks:**

a) Find \((g \circ f)(x)\).

b) Determine the Domain and Range of \((f \circ g)(x)\).

**Solution Explanation:**

a) To find \((g \circ f)(x)\), we substitute \( f(x) \) into \( g(x) \).

- **Step 1:** Calculate \( f(x) = 2x - 1 \).

- **Step 2:** Substitute \( f(x) \) into \( g(x) \):
  \[
  g(f(x)) = g(2x - 1) = (2x - 1)^2 - 2(2x - 1) + 1
  \]

  - Expand \((2x - 1)^2\):
    \[
    (2x - 1)^2 = 4x^2 - 4x + 1
    \]

  - Calculate the linear terms:
    \[
    -2(2x - 1) = -4x + 2
    \]

  - Substitute back into the expression:
    \[
    g(f(x)) = 4x^2 - 4x + 1 - 4x + 2 + 1 = 4x^2 - 8x + 4
    \]

b) To determine the domain and range of \((f \circ g)(x)\), consider:

- **Domain:** \(\mathbb{R}\), as polynomial functions are defined for all real numbers.

- **Range:** The output of \((f \circ g)(x)\) based on specific calculations and behaviors of quadratic functions.
Transcribed Image Text:**Mathematics Function Composition: Problem Solving** **Given Functions:** Let \( f(x) = 2x - 1 \) and \( g(x) = x^2 - 2x + 1 \), for \( x \in \mathbb{R} \). **Tasks:** a) Find \((g \circ f)(x)\). b) Determine the Domain and Range of \((f \circ g)(x)\). **Solution Explanation:** a) To find \((g \circ f)(x)\), we substitute \( f(x) \) into \( g(x) \). - **Step 1:** Calculate \( f(x) = 2x - 1 \). - **Step 2:** Substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(2x - 1) = (2x - 1)^2 - 2(2x - 1) + 1 \] - Expand \((2x - 1)^2\): \[ (2x - 1)^2 = 4x^2 - 4x + 1 \] - Calculate the linear terms: \[ -2(2x - 1) = -4x + 2 \] - Substitute back into the expression: \[ g(f(x)) = 4x^2 - 4x + 1 - 4x + 2 + 1 = 4x^2 - 8x + 4 \] b) To determine the domain and range of \((f \circ g)(x)\), consider: - **Domain:** \(\mathbb{R}\), as polynomial functions are defined for all real numbers. - **Range:** The output of \((f \circ g)(x)\) based on specific calculations and behaviors of quadratic functions.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning