Let F(t)= (-5t² +2,-5e-3, 3 sin(2t)) = 0. Round to 4 decimal places. Find the unit tangent vector T(t) at the point t T(0) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question 7**

Let \(\vec{r}(t) = \langle -5t^2 + 2, -5e^{-3t}, 3 \sin(2t) \rangle\).

Find the unit tangent vector \(\vec{T}(t)\) at the point \(t = 0\). Round to 4 decimal places.

\(\vec{T}(0) =\) [Input Box]

Question Help: [Video Button]

[Check Answer Button]
Transcribed Image Text:**Question 7** Let \(\vec{r}(t) = \langle -5t^2 + 2, -5e^{-3t}, 3 \sin(2t) \rangle\). Find the unit tangent vector \(\vec{T}(t)\) at the point \(t = 0\). Round to 4 decimal places. \(\vec{T}(0) =\) [Input Box] Question Help: [Video Button] [Check Answer Button]
Expert Solution
Step 1: Given:

r with rightwards arrow on top open parentheses t close parentheses equals open angle brackets negative 5 t squared plus 2 comma space minus 5 e to the power of negative 3 t end exponent comma space 3 space sin open parentheses 2 t close parentheses close angle brackets

We have to find unit tangent vector T with rightwards arrow on top open parentheses t close parentheses at a point t equals 0.

steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,