Let Find o*w. w = e e6(x+²) dy ^ dz + e¯ª dz^ dx + e¹(x−²) dx / dy be a two-form on R³, and 6: (R>0)² → R³ be the smooth function Your last answer was interpreted as follows: (u, v) = (ln(uv), In(u + v), In(uv)). ø*w = (e^6*u*v*(u-v)+v-u)/(u*v*(u+v)) eu.v. (u-v) + v- u u⋅v. (u + v) du λ dv

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let
w = e6(x+2) dy ^ dz + e-Y dz ^ dx + e4(#-2) dx ^ dy
be a two-form on R3, and o : (R-0)² → R³ be the smooth function
$(u, v) = (In(uv), In(u + v), In(uv)).
Find o*w.
O*w =
|(e^6*u*v*(u-v)+V-u)/(u*v*(u+v))
du A dv
Your last answer was interpreted as follows:
еб . и: у: (и — v) + U — и
u· v· (u + v)
Transcribed Image Text:Let w = e6(x+2) dy ^ dz + e-Y dz ^ dx + e4(#-2) dx ^ dy be a two-form on R3, and o : (R-0)² → R³ be the smooth function $(u, v) = (In(uv), In(u + v), In(uv)). Find o*w. O*w = |(e^6*u*v*(u-v)+V-u)/(u*v*(u+v)) du A dv Your last answer was interpreted as follows: еб . и: у: (и — v) + U — и u· v· (u + v)
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,