Let fi : R" –→ R and f2 : R" → R be two functions. (5.1) Consider the following proposition: If epi(f1) N epi(f2) is a convex set, then at least one of the functions fi and f2 is a convex function. Either prove this proposition or give a counterexample (i.e., find two functions fi : R" → R and f2 : R" → R that satisfy the hypothesis but do not satisfy the conclusion).
Let fi : R" –→ R and f2 : R" → R be two functions. (5.1) Consider the following proposition: If epi(f1) N epi(f2) is a convex set, then at least one of the functions fi and f2 is a convex function. Either prove this proposition or give a counterexample (i.e., find two functions fi : R" → R and f2 : R" → R that satisfy the hypothesis but do not satisfy the conclusion).
Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter1: Fundamentals
Section1.2: Mappings
Problem 26E: 26. Let and. Prove that for any subset of T of .
Related questions
Question
please give a counterexample
![Let fi : R" –→ R and f2 : R" → R be two functions.
(5.1) Consider the following proposition:
If epi(f1) N epi(f2) is a convex set, then at least one of the functions f1 and f2 is a
convex function.
Either prove this proposition or give a counterexample (i.e., find two functions f1 : R" → R
and f2 : R" → R that satisfy the hypothesis but do not satisfy the conclusion).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e09be7d-8a95-4622-860b-6e5f40e00af4%2Fee7ca568-5fce-49ed-ac37-72d18dc37685%2Fq5916a9_processed.png&w=3840&q=75)
Transcribed Image Text:Let fi : R" –→ R and f2 : R" → R be two functions.
(5.1) Consider the following proposition:
If epi(f1) N epi(f2) is a convex set, then at least one of the functions f1 and f2 is a
convex function.
Either prove this proposition or give a counterexample (i.e., find two functions f1 : R" → R
and f2 : R" → R that satisfy the hypothesis but do not satisfy the conclusion).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Modern Algebra](https://www.bartleby.com/isbn_cover_images/9781285463230/9781285463230_smallCoverImage.gif)
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Elements Of Modern Algebra](https://www.bartleby.com/isbn_cover_images/9781285463230/9781285463230_smallCoverImage.gif)
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning