Let f,g be real-valued functions defined on a nonempty set X satisfying Range f and Range g are bounded subsets of R. Prove each of the following. (a) sup{f(x)+g(x) : x € X}< sup{f(x) : x E X}+ sup{g(x): x € X }. (b) inf{f(x) :x € X}+inf{g(x): x € X} < inf{f(x)+g(x):xEX}. (c) If f(x) < g(x) for all x E X, then sup{f(x) : x € X} < sup{g(x):x € X}.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
7. Let f,g be real-valued functions defined on a nonempty set X satisfying Range f and
Range g are bounded subsets of R. Prove each of the following.
(a) sup{f(x)+g(x) : x € X}< sup{f(x) : x E X}+ sup{g(x): x € X }.
(b) inf{f(x) : x € X}+inf{g(x): x E X }< inf{f(x)+g(x):x€ X}.
(c) If f(x) < g(x) for all x € X, then sup{f(x) :x € X} < sup{g(x):x € X }.
Transcribed Image Text:7. Let f,g be real-valued functions defined on a nonempty set X satisfying Range f and Range g are bounded subsets of R. Prove each of the following. (a) sup{f(x)+g(x) : x € X}< sup{f(x) : x E X}+ sup{g(x): x € X }. (b) inf{f(x) : x € X}+inf{g(x): x E X }< inf{f(x)+g(x):x€ X}. (c) If f(x) < g(x) for all x € X, then sup{f(x) :x € X} < sup{g(x):x € X }.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,