Let f: RR be given by f(x) = x²-4 X-2 2 if x # 2 . Find the oscillation (2) = inf{o (D(2,8)): 8>0}, where (D(2,8)) = sup{|f(x)-f(y)]: x,y D(2,8)), off at x = 2. if x=2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question 2**

Let \( f: \mathbb{R} \to \mathbb{R} \) be given by 

\[
f(x) = 
\begin{cases} 
\frac{x^2 - 4}{x - 2} & \text{if } x \neq 2 \\
2 & \text{if } x = 2 
\end{cases}
\]

Find the oscillation \( \omega_f(2) = \inf(\omega_f(D(2,\delta)) : \delta > 0) \), where \( \omega_f(D(2,\delta)) = \sup \{|f(x) - f(y)| : x, y \in D(2,\delta) \} \), of \( f \) at \( x = 2 \).

**Question 3**

Let \( f: \mathbb{R} \to \mathbb{R} \) be defined by

\[
f(x) = 
\begin{cases} 
\left( x - \frac{\pi}{2} \right) \cos\left(\frac{1}{x - \frac{\pi}{2}}\right) & \text{if } x \neq \frac{\pi}{2} \\
0 & \text{if } x = \frac{\pi}{2} 
\end{cases}
\]

Find the oscillation \( \omega_f\left(\frac{\pi}{2}\right) = \inf(\omega_f(D(\frac{\pi}{2}, \delta)) : \delta > 0) \), where \( \omega_f(D(\frac{\pi}{2},\delta)) = \sup \{|f(x) - f(y)| : x, y \in D(\frac{\pi}{2},\delta) \} \), of \( f \) at \( x = \frac{\pi}{2} \).

**Question 4**

Let \( f:\mathbb{R} \to \mathbb{R} \) be given by

\[
f(x) = 
\begin{cases}
\frac{1}{1+x^2} & \text{if } x \in \mathbb{Q} \\
4 - x^2 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q}
Transcribed Image Text:**Question 2** Let \( f: \mathbb{R} \to \mathbb{R} \) be given by \[ f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2 \\ 2 & \text{if } x = 2 \end{cases} \] Find the oscillation \( \omega_f(2) = \inf(\omega_f(D(2,\delta)) : \delta > 0) \), where \( \omega_f(D(2,\delta)) = \sup \{|f(x) - f(y)| : x, y \in D(2,\delta) \} \), of \( f \) at \( x = 2 \). **Question 3** Let \( f: \mathbb{R} \to \mathbb{R} \) be defined by \[ f(x) = \begin{cases} \left( x - \frac{\pi}{2} \right) \cos\left(\frac{1}{x - \frac{\pi}{2}}\right) & \text{if } x \neq \frac{\pi}{2} \\ 0 & \text{if } x = \frac{\pi}{2} \end{cases} \] Find the oscillation \( \omega_f\left(\frac{\pi}{2}\right) = \inf(\omega_f(D(\frac{\pi}{2}, \delta)) : \delta > 0) \), where \( \omega_f(D(\frac{\pi}{2},\delta)) = \sup \{|f(x) - f(y)| : x, y \in D(\frac{\pi}{2},\delta) \} \), of \( f \) at \( x = \frac{\pi}{2} \). **Question 4** Let \( f:\mathbb{R} \to \mathbb{R} \) be given by \[ f(x) = \begin{cases} \frac{1}{1+x^2} & \text{if } x \in \mathbb{Q} \\ 4 - x^2 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q}
Expert Solution
Step 1: Determination of given function

“Since you have posted multiple questions, we will provide the solution only to the first question as per our Q&A guidelines. Please repost the remaining questions separately.”Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,