Let f: R2R where f(x, y) = 0 if (x, y) = (0,0) x². if (x, y) = (0,0). Use the e-6 definition of partial derivative to prove that Duf(0,0) = 0 for u= (1,0).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Real Analysis II Please kindly follow exact instructions and hint
2. Let \( f : \mathbb{R}^2 \to \mathbb{R} \) where
\[
f(x, y) = 
\begin{cases} 
0 & \text{if } (x, y) = (0, 0) \\
\frac{xy^2}{x^2+y^2} & \text{if } (x, y) \neq (0, 0)
\end{cases}
\]

Use the \(\epsilon\)-\(\delta\) definition of partial derivative to prove that \( D_u f(0,0) = 0 \) for \( u = (1,0) \).
Transcribed Image Text:2. Let \( f : \mathbb{R}^2 \to \mathbb{R} \) where \[ f(x, y) = \begin{cases} 0 & \text{if } (x, y) = (0, 0) \\ \frac{xy^2}{x^2+y^2} & \text{if } (x, y) \neq (0, 0) \end{cases} \] Use the \(\epsilon\)-\(\delta\) definition of partial derivative to prove that \( D_u f(0,0) = 0 \) for \( u = (1,0) \).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,