Let f : R? → R² be the linear transformation defined by -4 f(#) : 4 Let {(-1,–2), (3, 5)}, {(1, 2), (1, 1)}, B C be two different bases for R?. Find the matrix [f1% for f relative to the basis B in the domain and C in the codomain.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( f : \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation defined by

\[
f(\vec{x}) = 
\begin{bmatrix}
-4 & 5 \\
4 & -4
\end{bmatrix}
\vec{x}.
\]

Let

\[
\mathbb{B} = \{ \langle -1, -2 \rangle, \langle 3, 5 \rangle \},
\]
\[
\mathbb{C} = \{ \langle 1, 2 \rangle, \langle 1, 1 \rangle \},
\]

be two different bases for \(\mathbb{R}^2\). Find the matrix \([f]_{\mathbb{C}}^{\mathbb{B}}\) for \( f \) relative to the basis \(\mathbb{B}\) in the domain and \(\mathbb{C}\) in the codomain.

\[
[f]_{\mathbb{C}}^{\mathbb{B}} = 
\begin{bmatrix}
\underline{\hspace{2cm}} & \underline{\hspace{2cm}} \\
\underline{\hspace{2cm}} & \underline{\hspace{2cm}}
\end{bmatrix}
\]
Transcribed Image Text:Let \( f : \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation defined by \[ f(\vec{x}) = \begin{bmatrix} -4 & 5 \\ 4 & -4 \end{bmatrix} \vec{x}. \] Let \[ \mathbb{B} = \{ \langle -1, -2 \rangle, \langle 3, 5 \rangle \}, \] \[ \mathbb{C} = \{ \langle 1, 2 \rangle, \langle 1, 1 \rangle \}, \] be two different bases for \(\mathbb{R}^2\). Find the matrix \([f]_{\mathbb{C}}^{\mathbb{B}}\) for \( f \) relative to the basis \(\mathbb{B}\) in the domain and \(\mathbb{C}\) in the codomain. \[ [f]_{\mathbb{C}}^{\mathbb{B}} = \begin{bmatrix} \underline{\hspace{2cm}} & \underline{\hspace{2cm}} \\ \underline{\hspace{2cm}} & \underline{\hspace{2cm}} \end{bmatrix} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,