Let F be a smooth vector field on a simply connected open subset U CR. Show that F is both irrotational and incompressible if and only if it can be written as F = Vf for a smooth function f: U →R satisfying V²ƒ = 0, where V² is the Laplacian operator. Note that a function f that is a solution of the equation V? f = 0 is called a harmonic function.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let F be a smooth vector field on a simply connected open subset U C Rº. Show that F is both irrotational and incompressible if and only if it can be written as
F = Vf
for a smooth function f : U → R satisfying
V² f = 0,
where V2 is the Laplacian operator.
Note that a function f that is a solution of the equation V2 f = 0 is called a harmonic function.
Transcribed Image Text:Let F be a smooth vector field on a simply connected open subset U C Rº. Show that F is both irrotational and incompressible if and only if it can be written as F = Vf for a smooth function f : U → R satisfying V² f = 0, where V2 is the Laplacian operator. Note that a function f that is a solution of the equation V2 f = 0 is called a harmonic function.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,