Let f and g be the functions in the table below. g(x) 2 3 1 X 1 2 3 f(x) 3 1 2 (a) If F(x) = f(f(x)), find F (3). F '(3) = (b) If G(x) = g(g(x)), find G'(2). G'(2) = f'(x) 4 5 7 st g'(x) 6 7 9

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Let \( f \) and \( g \) be the functions in the table below.**

| \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) |
|:------:|:-------:|:-------:|:-------:|:-------:|
| 1      | 3       | 2       | 4       | 6       |
| 2      | 1       | 3       | 5       | 7       |
| 3      | 2       | 1       | 7       | 9       |

### Problems

**(a)** If \( F(x) = f(f(x)) \), find \( F'(3) \).

\[ F'(3) = \_\_\_\_\_\_\_ \]

**(b)** If \( G(x) = g(g(x)) \), find \( G'(2) \).

\[ G'(2) = \_\_\_\_\_\_\_ \]

### Solution Steps

**For (a):**

1. Identify the function composition \( F(x) = f(f(x)) \).
2. Use the chain rule to differentiate \( F(x) \). That is, \( F'(x) = f'(f(x)) \cdot f'(x) \).
3. Determine \( f(3) \) from the table. From the table, \( f(3) = 2 \).
4. Find \( f'(2) \) and \( f'(3) \) from the table.
   - \( f'(2) = 5 \)
   - \( f'(3) = 7 \)
5. Calculate \( F'(3) = f'(f(3)) \cdot f'(3) = f'(2) \cdot f'(3) = 5 \cdot 7 = 35 \).

**So,**

\[ F'(3) = 35 \]

**For (b):**

1. Identify the function composition \( G(x) = g(g(x)) \).
2. Use the chain rule to differentiate \( G(x) \). That is, \( G'(x) = g'(g(x)) \cdot g'(x) \).
3. Determine \( g(2) \) from the table. From the table,
Transcribed Image Text:**Let \( f \) and \( g \) be the functions in the table below.** | \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) | |:------:|:-------:|:-------:|:-------:|:-------:| | 1 | 3 | 2 | 4 | 6 | | 2 | 1 | 3 | 5 | 7 | | 3 | 2 | 1 | 7 | 9 | ### Problems **(a)** If \( F(x) = f(f(x)) \), find \( F'(3) \). \[ F'(3) = \_\_\_\_\_\_\_ \] **(b)** If \( G(x) = g(g(x)) \), find \( G'(2) \). \[ G'(2) = \_\_\_\_\_\_\_ \] ### Solution Steps **For (a):** 1. Identify the function composition \( F(x) = f(f(x)) \). 2. Use the chain rule to differentiate \( F(x) \). That is, \( F'(x) = f'(f(x)) \cdot f'(x) \). 3. Determine \( f(3) \) from the table. From the table, \( f(3) = 2 \). 4. Find \( f'(2) \) and \( f'(3) \) from the table. - \( f'(2) = 5 \) - \( f'(3) = 7 \) 5. Calculate \( F'(3) = f'(f(3)) \cdot f'(3) = f'(2) \cdot f'(3) = 5 \cdot 7 = 35 \). **So,** \[ F'(3) = 35 \] **For (b):** 1. Identify the function composition \( G(x) = g(g(x)) \). 2. Use the chain rule to differentiate \( G(x) \). That is, \( G'(x) = g'(g(x)) \cdot g'(x) \). 3. Determine \( g(2) \) from the table. From the table,
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning