Let F = {a + bi : a, b e Q}, where i? = – 1. Show that F is a field.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear Algebra

1.4.2
Let F = {a + bi : a, b e Q}, where i? = – 1. Show that F is a field.
Transcribed Image Text:1.4.2 Let F = {a + bi : a, b e Q}, where i? = – 1. Show that F is a field.
Expert Solution
Step 1

Given F=a+bi:a,bQ, where i2=-1.

We have to show that F is a field.

First of all we define addition '+' and multiplication '·' on F which is given as follows.

a+bi+c+di=a+c+b+dia+bic+di=acbd+ab+bci

First we will show that F forms abelian group with respect to addition '+' .

(i) Let  a+bi, c+di, e+fiF

Now,

a+bi+c+di+e+fi=a+c+b+di+e+fi=a+c+e+b+d+fi=a+bi+c+e+d+fi=a+bi+c+di+e+fi

Hence, a+bi+c+di+e+fi=a+bi+c+di+e+fi

Therefore, addition is associative.

(ii) 0=0+0iF

If a+biF then 

a+bi+0=a+0+bi=a+bi=0+a+bi

Hence, '0' is the additive identity in F.

(iii) Let a+biF

Since, a, bq-a, -bq

So, abiF

Now,

a+bi+abi=aa+bbi=0+0i=0

Hence, abi is the additive inverse of a+bi.

(iv) Let a+bi, c+diF

Then

a+bi+c+di=a+c+b+di=c+a+d+bi=c+di+a+bi

Since, a+bi+c+di=c+di+a+bi

Hence, F forms abelian group with respect to addition '+' .

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,