= Let f [1,1] → R be a continuous function which is odd, f(x) -f(-x). Show that then, there is a sequence of polynomials which are odd and which uniformly converge to f.

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter4: Polynomial And Rational Functions
Section4.1: Polynomial Functions Of Degree Greater Than
Problem 36E
icon
Related questions
Question
100%
=
Let ƒ : [−1,1] → R be a continuous function which is odd, f(x)
-f(-x). Show that then, there is a sequence of polynomials which are
odd and which uniformly converge to f.
Transcribed Image Text:= Let ƒ : [−1,1] → R be a continuous function which is odd, f(x) -f(-x). Show that then, there is a sequence of polynomials which are odd and which uniformly converge to f.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781938168383
Author:
Jay Abramson
Publisher:
OpenStax
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning