Let e₁ = 6 [1], e₂ = [9], Y₁ = [3], and y₂ = [¹], and let T.: R² → R²be a linear transformation that maps e₁ into y₁ and maps e2 into y₂. Find the image of [53] ² and [₁].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear Transformation

**Problem Statement:**

Given the vectors:
- \( \mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \)
- \( \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)
- \( \mathbf{y_1} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \)
- \( \mathbf{y_2} = \begin{bmatrix} -1 \\ 6 \end{bmatrix} \)

and let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{e_1} \) into \( \mathbf{y_1} \) and maps \( \mathbf{e_2} \) into \( \mathbf{y_2} \). Find the image of 
\[ 
\begin{bmatrix} 5 \\ -3 \end{bmatrix} 
\]
and 
\[ 
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
\]

**Explanation:**

1. **Determining the Linear Transformation Matrix**:
    - The linear transformation \( T \) is defined by the basis vectors \( \mathbf{e_1} \) and \( \mathbf{e_2} \), and their corresponding images \( \mathbf{y_1} \) and \( \mathbf{y_2} \).
    - The matrix representation of \( T \) in the standard basis can be found by using the columns \( \mathbf{y_1} \) and \( \mathbf{y_2} \):

    \[ T = \begin{bmatrix} \mathbf{y_1} & \mathbf{y_2} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 6 \end{bmatrix} \]

2. **Finding the Image of \( \mathbf{v} = \begin{bmatrix} 5 \\ -3 \end{bmatrix} \)**:
    - To find the image of \( \mathbf{v} \) under \( T \), we multiply the transformation matrix by \( \mathbf{v} \):

    \[
Transcribed Image Text:**Problem Statement:** Given the vectors: - \( \mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) - \( \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) - \( \mathbf{y_1} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \) - \( \mathbf{y_2} = \begin{bmatrix} -1 \\ 6 \end{bmatrix} \) and let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{e_1} \) into \( \mathbf{y_1} \) and maps \( \mathbf{e_2} \) into \( \mathbf{y_2} \). Find the image of \[ \begin{bmatrix} 5 \\ -3 \end{bmatrix} \] and \[ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \] **Explanation:** 1. **Determining the Linear Transformation Matrix**: - The linear transformation \( T \) is defined by the basis vectors \( \mathbf{e_1} \) and \( \mathbf{e_2} \), and their corresponding images \( \mathbf{y_1} \) and \( \mathbf{y_2} \). - The matrix representation of \( T \) in the standard basis can be found by using the columns \( \mathbf{y_1} \) and \( \mathbf{y_2} \): \[ T = \begin{bmatrix} \mathbf{y_1} & \mathbf{y_2} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 6 \end{bmatrix} \] 2. **Finding the Image of \( \mathbf{v} = \begin{bmatrix} 5 \\ -3 \end{bmatrix} \)**: - To find the image of \( \mathbf{v} \) under \( T \), we multiply the transformation matrix by \( \mathbf{v} \): \[
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,