Let C, be the straight line path z = (1 + i)t, 0 Sts 1; Cz the quarter circle z =1- cost +isin t, 0 ses }; and Ca the path ==t, (0SIS 1), 1+i(t – 1) (1
Let C, be the straight line path z = (1 + i)t, 0 Sts 1; Cz the quarter circle z =1- cost +isin t, 0 ses }; and Ca the path ==t, (0SIS 1), 1+i(t – 1) (1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Integral Paths and Calculation**
Let \( C_1 \) be the straight line path \( z = (1+i)t \), \( 0 \leq t \leq 1 \); \( C_2 \) the quarter circle \( z = 1 - \cos t + i \sin t \), \( 0 \leq t \leq \frac{\pi}{2} \); and \( C_3 \) the path \( z = t \), \( (0 \leq t \leq 1) \), \( 1 + i(t-1) \) \( (1 \leq t \leq 2) \).
Show that:
\[
\int_{C_1} z \, dz = \int_{C_2} z \, dz = \int_{C_3} z \, dz = i.
\]
**Explanation:**
The problem involves evaluating complex line integrals over specified paths in the complex plane.
- **\( C_1 \)**: A straight line path defined by the equation \( z = (1+i)t \) with parameter \( t \) ranging from 0 to 1.
- **\( C_2 \)**: A quarter circle traced out by the complex exponential form, ranging from \( t = 0 \) to \( t = \frac{\pi}{2} \).
- **\( C_3 \)**: This path combines two segments. The first part, \( z = t \), runs from \( t = 0 \) to \( t = 1 \), and the second segment follows \( 1 + i(t-1) \) from \( t = 1 \) to \( t = 2 \).
The task is to evaluate and confirm that the integral of \( z \) over each of these paths results in \( i \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F64d8456b-6e21-449f-8cb3-a408fbe9b9b6%2F2409a899-039b-4269-8aad-ef95728ffc7f%2F8cwomjm_processed.png&w=3840&q=75)
Transcribed Image Text:**Integral Paths and Calculation**
Let \( C_1 \) be the straight line path \( z = (1+i)t \), \( 0 \leq t \leq 1 \); \( C_2 \) the quarter circle \( z = 1 - \cos t + i \sin t \), \( 0 \leq t \leq \frac{\pi}{2} \); and \( C_3 \) the path \( z = t \), \( (0 \leq t \leq 1) \), \( 1 + i(t-1) \) \( (1 \leq t \leq 2) \).
Show that:
\[
\int_{C_1} z \, dz = \int_{C_2} z \, dz = \int_{C_3} z \, dz = i.
\]
**Explanation:**
The problem involves evaluating complex line integrals over specified paths in the complex plane.
- **\( C_1 \)**: A straight line path defined by the equation \( z = (1+i)t \) with parameter \( t \) ranging from 0 to 1.
- **\( C_2 \)**: A quarter circle traced out by the complex exponential form, ranging from \( t = 0 \) to \( t = \frac{\pi}{2} \).
- **\( C_3 \)**: This path combines two segments. The first part, \( z = t \), runs from \( t = 0 \) to \( t = 1 \), and the second segment follows \( 1 + i(t-1) \) from \( t = 1 \) to \( t = 2 \).
The task is to evaluate and confirm that the integral of \( z \) over each of these paths results in \( i \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)