Let c be a nonzero real number and cn? an Which one of the following 5n2 - 3n + 7 statements is correct? Note: In the following, "the series" refers to the series E an and "the sequence" refers to the sequence 00 n=1 {an}.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Let c be a nonzero real number and
cn?
an
Which one of the following
5n2 – 3n + 7
statements is correct?
Note: In the following, "the series" refers to the series
Σ
E an and "the sequence" refers to the sequence
n=1
{an}.
Türkçe: c sıfırdan farklı bir reel sayı olsun ve
cn?
an
olsun. Aşağıdaki ifadelerden
5n2 – 3n + 7
hangisi doğrudur?
Not: Aşağıda "seri" kelimesi ile E an serisinden ve
n=1
"dizi" kelimesiyle de {an} dizisinden bahsedilmektedir.
Transcribed Image Text:Let c be a nonzero real number and cn? an Which one of the following 5n2 – 3n + 7 statements is correct? Note: In the following, "the series" refers to the series Σ E an and "the sequence" refers to the sequence n=1 {an}. Türkçe: c sıfırdan farklı bir reel sayı olsun ve cn? an olsun. Aşağıdaki ifadelerden 5n2 – 3n + 7 hangisi doğrudur? Not: Aşağıda "seri" kelimesi ile E an serisinden ve n=1 "dizi" kelimesiyle de {an} dizisinden bahsedilmektedir.
The series diverges by the Ratio Test. (Oran Testi
serinin ıraksak oluğunu söyler).
The series converges because the limit of the
sequence exists. (Seri yakınsar çünkü dizinin limiti
vardır).
O The series converges if and only if 5>c. (Seri
yalnız ve yalnızca 5>c olduğu zaman yakınsar).
O The series diverges because the limit of the
sequence is a nonzero real number. (Seri iraksar
çünkü dizinin limiti sıfırdan farklı bir reel sayıdır).
O The series converges if and only if c>5. (Seri
yalnız ve yalnızca c>5 olduğu zaman yakınsar).
O The series diverges because the limit of the
sequence does not exist. (Seri iraksar çünkü
dizinin limiti yoktur).
Transcribed Image Text:The series diverges by the Ratio Test. (Oran Testi serinin ıraksak oluğunu söyler). The series converges because the limit of the sequence exists. (Seri yakınsar çünkü dizinin limiti vardır). O The series converges if and only if 5>c. (Seri yalnız ve yalnızca 5>c olduğu zaman yakınsar). O The series diverges because the limit of the sequence is a nonzero real number. (Seri iraksar çünkü dizinin limiti sıfırdan farklı bir reel sayıdır). O The series converges if and only if c>5. (Seri yalnız ve yalnızca c>5 olduğu zaman yakınsar). O The series diverges because the limit of the sequence does not exist. (Seri iraksar çünkü dizinin limiti yoktur).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning