Let c be a constant and let f and g be differentiable functions on R². Use the gradient rules V(cf)=cVf, V(f+g) = Vf+Vg, V(fg) = (f)g +fVg, and Choose the correct answer below. OA. xyz (5x+3y +2z +6yz,5x+3y + 2z+6xz,5x+3y +2z+6xy) OB. 6 xyz (5x+3y +2z) (5,3,2) C. 6xyz (5 +6yz(5x+3y + 2z),3+6xz(5x+3y + 2z),2 +6xy(5x+3y +2z)) OD. 6 xyz (5x+3y +2z) (yz,xz.xy) = gVf-fVg to find the gradient of f(x,y,z) = (5x+3y + 2z) e xyz.
Let c be a constant and let f and g be differentiable functions on R². Use the gradient rules V(cf)=cVf, V(f+g) = Vf+Vg, V(fg) = (f)g +fVg, and Choose the correct answer below. OA. xyz (5x+3y +2z +6yz,5x+3y + 2z+6xz,5x+3y +2z+6xy) OB. 6 xyz (5x+3y +2z) (5,3,2) C. 6xyz (5 +6yz(5x+3y + 2z),3+6xz(5x+3y + 2z),2 +6xy(5x+3y +2z)) OD. 6 xyz (5x+3y +2z) (yz,xz.xy) = gVf-fVg to find the gradient of f(x,y,z) = (5x+3y + 2z) e xyz.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Understanding Gradients and Differentiable Functions**
In this section, we explore the concept of differentiable functions and how to find their gradients. Consider the following scenario:
Let \( c \) be a constant and let \( f \) and \( g \) be differentiable functions on \(\mathbb{R}^2\). We use the gradient rules:
- \(\nabla (cf) = c \nabla f\)
- \(\nabla (f + g) = \nabla f + \nabla g\)
- \(\nabla (fg) = (\nabla f)g + f \nabla g\)
- \(\nabla \left(\frac{f}{g}\right) = \frac{g \nabla f - f \nabla g}{g^2}\)
We aim to find the gradient of the function \( f(x, y, z) = (5x + 3y + 2z) e^{6xyz} \).
**Choose the correct answer:**
- **A.** \( e^{6xyz} (5x + 3y + 2z + 6yz, 5x + 3y + 2z + 6xz, 5x + 3y + 2z + 6xy) \)
- **B.** \( 6 \, e^{6xyz}(5x + 3y + 2z)(5,3,2) \)
- **C.** \( e^{6xyz} (5 + 6yz(5x + 3y + 2z), 3 + 6xz(5x + 3y + 2z), 2 + 6xy(5x + 3y + 2z)) \) ✓
- **D.** \( 6 \, e^{6xyz}(5x + 3y + 2z) (yz, xz, xy) \)
The correct answer is option **C**. Here, the gradient incorporates the partial derivatives calculated using both the original function and its exponential component.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F511d779c-bf10-4315-98b1-4f0038c55113%2Fa0a96762-fb06-43e3-8ba7-3bc4f25d33f4%2Foelw9cv_processed.png&w=3840&q=75)
Transcribed Image Text:**Understanding Gradients and Differentiable Functions**
In this section, we explore the concept of differentiable functions and how to find their gradients. Consider the following scenario:
Let \( c \) be a constant and let \( f \) and \( g \) be differentiable functions on \(\mathbb{R}^2\). We use the gradient rules:
- \(\nabla (cf) = c \nabla f\)
- \(\nabla (f + g) = \nabla f + \nabla g\)
- \(\nabla (fg) = (\nabla f)g + f \nabla g\)
- \(\nabla \left(\frac{f}{g}\right) = \frac{g \nabla f - f \nabla g}{g^2}\)
We aim to find the gradient of the function \( f(x, y, z) = (5x + 3y + 2z) e^{6xyz} \).
**Choose the correct answer:**
- **A.** \( e^{6xyz} (5x + 3y + 2z + 6yz, 5x + 3y + 2z + 6xz, 5x + 3y + 2z + 6xy) \)
- **B.** \( 6 \, e^{6xyz}(5x + 3y + 2z)(5,3,2) \)
- **C.** \( e^{6xyz} (5 + 6yz(5x + 3y + 2z), 3 + 6xz(5x + 3y + 2z), 2 + 6xy(5x + 3y + 2z)) \) ✓
- **D.** \( 6 \, e^{6xyz}(5x + 3y + 2z) (yz, xz, xy) \)
The correct answer is option **C**. Here, the gradient incorporates the partial derivatives calculated using both the original function and its exponential component.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning