Let a,b be two different points in R^n one. We notice that d=(a,b)>0 (why is that so ?). Prove that for all real numbers r1,r2>0 holds: (a) B(a;r1)^B(b;r2)=Ø⇒r1+r2>d (b) r1+r2
Let a,b be two different points in R^n one. We notice that d=(a,b)>0 (why is that so ?). Prove that for all real numbers r1,r2>0 holds: (a) B(a;r1)^B(b;r2)=Ø⇒r1+r2>d (b) r1+r2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Let a,b be two different points in ℝn one. We notice that d=(a,b)>0 (why is that so ?). Prove that for all real numbers r1 ,r2>0 holds:
(a) B(a;r 1)∩B(b;r 2)=∅⇒r 1+r 2>d
(b) r1+r2≤d⇒B(a;r1)∩B(b;r2)=∅
(c) r1+r2≤d↔ B(a;r1)∩B(b;r2)=∅
I attached an image for better format, if able please give some background and explanation with the steps cause I reallly dont understand anything. Thank you in advance
![Let a,b be two different points in R^n one. We
notice that d=(a,b)>0 (why is that so ?). Prove that
for all real numbers r1,r2>0 holds:
(a)
B(a;r1)nB(b;r2)=Ø⇒r1+r2>d
(b) r1+r2<d⇒B(a;r1)^B(b;r2)=Ø
(c) r1+r2<d→ B(a;r1) B(b;r2)=0](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F42044228-cff6-4391-9596-005bad4f5c7f%2Fb47317fc-2d71-4115-a058-eaa6eae446e1%2Ffvha7q6b_processed.png&w=3840&q=75)
Transcribed Image Text:Let a,b be two different points in R^n one. We
notice that d=(a,b)>0 (why is that so ?). Prove that
for all real numbers r1,r2>0 holds:
(a)
B(a;r1)nB(b;r2)=Ø⇒r1+r2>d
(b) r1+r2<d⇒B(a;r1)^B(b;r2)=Ø
(c) r1+r2<d→ B(a;r1) B(b;r2)=0
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)