Let A be an eigenvalue of an n x n matrix A. Show that A² -2 is an eigenvalue of A² - 21₁.
Let A be an eigenvalue of an n x n matrix A. Show that A² -2 is an eigenvalue of A² - 21₁.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Eigenvalues of Matrix Transformations
**Problem Statement:**
2. Let \( \lambda \) be an eigenvalue of an \( n \times n \) matrix \( A \). Show that \( \lambda^2 - 2 \) is an eigenvalue of \( A^2 - 2I_n \).
**Explanatory Solution:**
Given the context of linear algebra and matrix theory:
1. **Eigenvalue Definition:**
- If \( \lambda \) is an eigenvalue of matrix \( A \), there exists a non-zero vector \( \mathbf{v} \) such that \( A\mathbf{v} = \lambda\mathbf{v} \).
2. **Expression to Show:**
- Given \( \lambda \) is an eigenvalue of \( A \), we want to show that \( \lambda^2 - 2 \) is an eigenvalue of \( A^2 - 2I_n \).
**Steps to Solution:**
1. **Starting from the Eigenvalue Definition:**
- \( A\mathbf{v} = \lambda\mathbf{v} \)
2. **Square Both Sides:**
- \( A^2\mathbf{v} = A(A\mathbf{v}) = A(\lambda\mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda\mathbf{v}) = \lambda^2\mathbf{v} \)
This shows that \( \mathbf{v} \) is also an eigenvector of \( A^2 \) with eigenvalue \( \lambda^2 \).
3. **Transformation Involving Identity Matrix:**
- Define \( B = A^2 - 2I_n \).
4. **Apply Transformation to Eigenvector:**
- \( B\mathbf{v} = (A^2 - 2I_n)\mathbf{v} = A^2\mathbf{v} - 2I_n\mathbf{v} \).
5. **Substitute Known Values:**
- \( B\mathbf{v} = \lambda^2\mathbf{v} - 2\mathbf{v} = (\lambda^2 - 2)\mathbf{v} \).
6. **Conclusion:**
- Since \( B\mathbf{v} = (\lambda^2 - 2)\mathbf{v} \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4b2a143d-2016-460a-a4a8-767b87cc7d00%2F35fa77b5-a33f-4134-b8c8-7a24b82da52f%2Ft8a1vbj_processed.png&w=3840&q=75)
Transcribed Image Text:### Eigenvalues of Matrix Transformations
**Problem Statement:**
2. Let \( \lambda \) be an eigenvalue of an \( n \times n \) matrix \( A \). Show that \( \lambda^2 - 2 \) is an eigenvalue of \( A^2 - 2I_n \).
**Explanatory Solution:**
Given the context of linear algebra and matrix theory:
1. **Eigenvalue Definition:**
- If \( \lambda \) is an eigenvalue of matrix \( A \), there exists a non-zero vector \( \mathbf{v} \) such that \( A\mathbf{v} = \lambda\mathbf{v} \).
2. **Expression to Show:**
- Given \( \lambda \) is an eigenvalue of \( A \), we want to show that \( \lambda^2 - 2 \) is an eigenvalue of \( A^2 - 2I_n \).
**Steps to Solution:**
1. **Starting from the Eigenvalue Definition:**
- \( A\mathbf{v} = \lambda\mathbf{v} \)
2. **Square Both Sides:**
- \( A^2\mathbf{v} = A(A\mathbf{v}) = A(\lambda\mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda\mathbf{v}) = \lambda^2\mathbf{v} \)
This shows that \( \mathbf{v} \) is also an eigenvector of \( A^2 \) with eigenvalue \( \lambda^2 \).
3. **Transformation Involving Identity Matrix:**
- Define \( B = A^2 - 2I_n \).
4. **Apply Transformation to Eigenvector:**
- \( B\mathbf{v} = (A^2 - 2I_n)\mathbf{v} = A^2\mathbf{v} - 2I_n\mathbf{v} \).
5. **Substitute Known Values:**
- \( B\mathbf{v} = \lambda^2\mathbf{v} - 2\mathbf{v} = (\lambda^2 - 2)\mathbf{v} \).
6. **Conclusion:**
- Since \( B\mathbf{v} = (\lambda^2 - 2)\mathbf{v} \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 19 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)