Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
Please help me slove this and chose the correct answer.
![### Calculating the Derivative of the Product of Two Functions
Let \(\alpha\) be a real valued constant.
Consider the functions:
- \( f(x) = 3\alpha x^4 \)
- \( h(x) = \sqrt{2\alpha x + 5} \)
We are asked to determine the derivative of the product \( f(x) \cdot h(x) \), denoted as \(\frac{d}{dx}\left(f(x) h(x)\right)\).
The expression for the derivative is represented as follows:
\[ \frac{d}{dx} \left(f(x) h(x)\right) = \]
We need to choose the correct expression from the given options.
### Options:
1. \(\frac{3\alpha^3(9\alpha x + 20)\sqrt{2\alpha x + 5}}{2\alpha x + 5}\)
2. \(\frac{\left(27\alpha x^4 + 12x^3\right) (2\alpha x + 5)}{\sqrt{2\alpha x + 5}}\)
3. \(\frac{12\alpha x^3 \sqrt{2\alpha x + 5}}{2\alpha x + 5}\)
4. \(\frac{12 \alpha x^4 + 12x^3 + 3\alpha^2 x \sqrt{2\alpha x + 5}}{\sqrt{2\alpha x + 5}}\)
To find the correct expression, we use the product rule for differentiation:
\[ \frac{d}{dx} [f(x) \cdot h(x)] = f'(x)h(x) + f(x)h'(x) \]
Calculate the derivatives \( f'(x) \) and \( h'(x) \):
\( f'(x) = \frac{d}{dx} (3\alpha x^4) = 12\alpha x^3 \)
Using the chain rule for \( h(x) \):
\[ h(x) = (2\alpha x + 5)^{1/2} \]
\[ h'(x) = \frac{1}{2}(2\alpha x + 5)^{-1/2} \cdot 2\alpha \]
\[ h'(x) = \frac{\alpha}{\sqrt{2\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F95821423-add1-4621-b2f9-a571552602a6%2Fcf789d18-5a1a-4d2a-8db7-ada5eff4c2b8%2Fhioaw09_processed.png&w=3840&q=75)
Transcribed Image Text:### Calculating the Derivative of the Product of Two Functions
Let \(\alpha\) be a real valued constant.
Consider the functions:
- \( f(x) = 3\alpha x^4 \)
- \( h(x) = \sqrt{2\alpha x + 5} \)
We are asked to determine the derivative of the product \( f(x) \cdot h(x) \), denoted as \(\frac{d}{dx}\left(f(x) h(x)\right)\).
The expression for the derivative is represented as follows:
\[ \frac{d}{dx} \left(f(x) h(x)\right) = \]
We need to choose the correct expression from the given options.
### Options:
1. \(\frac{3\alpha^3(9\alpha x + 20)\sqrt{2\alpha x + 5}}{2\alpha x + 5}\)
2. \(\frac{\left(27\alpha x^4 + 12x^3\right) (2\alpha x + 5)}{\sqrt{2\alpha x + 5}}\)
3. \(\frac{12\alpha x^3 \sqrt{2\alpha x + 5}}{2\alpha x + 5}\)
4. \(\frac{12 \alpha x^4 + 12x^3 + 3\alpha^2 x \sqrt{2\alpha x + 5}}{\sqrt{2\alpha x + 5}}\)
To find the correct expression, we use the product rule for differentiation:
\[ \frac{d}{dx} [f(x) \cdot h(x)] = f'(x)h(x) + f(x)h'(x) \]
Calculate the derivatives \( f'(x) \) and \( h'(x) \):
\( f'(x) = \frac{d}{dx} (3\alpha x^4) = 12\alpha x^3 \)
Using the chain rule for \( h(x) \):
\[ h(x) = (2\alpha x + 5)^{1/2} \]
\[ h'(x) = \frac{1}{2}(2\alpha x + 5)^{-1/2} \cdot 2\alpha \]
\[ h'(x) = \frac{\alpha}{\sqrt{2\
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning