Let a be a real number and f(x, y) = 3ax?y + 8xy³. 3i – j and let Vf(æ, y) denote the gradient of f(r, y). Let v = i) Find Vf(1, 1) in terms of a. - 12/5 in) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is V2 find a. Türkçe: a bir reel sayı olmak üzere f(x, y) = 3ax?y + 8xy³ şeklinde tanımlansın. v = 3i – j ve Vf(x, y), f(x, y) fonksiyonunun gradyanı olsun. i) Vf(1, 1) değerini a değişkeninine göre ifade ediniz. i) f(x, y) fonksiyonunun (1, 1) noktasında v yönünde değişim oranın hızı –12 /5 ise a değerini bulunuz. V2 ) (ба + 8) і + (За + 24) ј, i) -4 i) (ба + 8) і + (3а + 24) ј, iї) -12 ) (ба + 8) і + (3а + 24) ј, iї) 12 ) (ба + 8) і + (За + 24) ј, ij) 0 ) (За + 8) і + (-ба + 24) ј, in) -4 ) (За + 8) і + (-ба + 24) jј, iї) -12 i) (3a + 8) i + (-6a + 24) j, ii) 12 ) (За + 8) і + (-ба + 24) ј, in) 0
Let a be a real number and f(x, y) = 3ax?y + 8xy³. 3i – j and let Vf(æ, y) denote the gradient of f(r, y). Let v = i) Find Vf(1, 1) in terms of a. - 12/5 in) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is V2 find a. Türkçe: a bir reel sayı olmak üzere f(x, y) = 3ax?y + 8xy³ şeklinde tanımlansın. v = 3i – j ve Vf(x, y), f(x, y) fonksiyonunun gradyanı olsun. i) Vf(1, 1) değerini a değişkeninine göre ifade ediniz. i) f(x, y) fonksiyonunun (1, 1) noktasında v yönünde değişim oranın hızı –12 /5 ise a değerini bulunuz. V2 ) (ба + 8) і + (За + 24) ј, i) -4 i) (ба + 8) і + (3а + 24) ј, iї) -12 ) (ба + 8) і + (3а + 24) ј, iї) 12 ) (ба + 8) і + (За + 24) ј, ij) 0 ) (За + 8) і + (-ба + 24) ј, in) -4 ) (За + 8) і + (-ба + 24) jј, iї) -12 i) (3a + 8) i + (-6a + 24) j, ii) 12 ) (За + 8) і + (-ба + 24) ј, in) 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let a be a real number and f(x, y) = 3ax?y + 8xy³.
3i – j and let Vf(æ, y) denote the gradient of f(r, y).
Let v =
i) Find Vf(1, 1) in terms of a.
- 12/5
in) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is
V2
find a.
Türkçe:
a bir reel sayı olmak üzere f(x, y) = 3ax?y + 8xy³ şeklinde tanımlansın.
v = 3i – j ve Vf(x, y), f(x, y) fonksiyonunun gradyanı olsun.
i) Vf(1, 1) değerini a değişkeninine göre ifade ediniz.
i) f(x, y) fonksiyonunun (1, 1) noktasında v yönünde değişim oranın hızı
–12 /5
ise a değerini bulunuz.
V2
) (ба + 8) і + (За + 24) ј, i) -4
i) (ба + 8) і + (3а + 24) ј, iї) -12
) (ба + 8) і + (3а + 24) ј, iї) 12
) (ба + 8) і + (За + 24) ј, ij) 0
) (За + 8) і + (-ба + 24) ј, in) -4
) (За + 8) і + (-ба + 24) jј, iї) -12
i) (3a + 8) i + (-6a + 24) j, ii) 12
) (За + 8) і + (-ба + 24) ј, in) 0](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe78ec49e-c8be-4118-a072-6487e221d98d%2F86626259-c3df-44f0-8a3c-e99ee710317a%2F8ladnea_processed.png&w=3840&q=75)
Transcribed Image Text:Let a be a real number and f(x, y) = 3ax?y + 8xy³.
3i – j and let Vf(æ, y) denote the gradient of f(r, y).
Let v =
i) Find Vf(1, 1) in terms of a.
- 12/5
in) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is
V2
find a.
Türkçe:
a bir reel sayı olmak üzere f(x, y) = 3ax?y + 8xy³ şeklinde tanımlansın.
v = 3i – j ve Vf(x, y), f(x, y) fonksiyonunun gradyanı olsun.
i) Vf(1, 1) değerini a değişkeninine göre ifade ediniz.
i) f(x, y) fonksiyonunun (1, 1) noktasında v yönünde değişim oranın hızı
–12 /5
ise a değerini bulunuz.
V2
) (ба + 8) і + (За + 24) ј, i) -4
i) (ба + 8) і + (3а + 24) ј, iї) -12
) (ба + 8) і + (3а + 24) ј, iї) 12
) (ба + 8) і + (За + 24) ј, ij) 0
) (За + 8) і + (-ба + 24) ј, in) -4
) (За + 8) і + (-ба + 24) jј, iї) -12
i) (3a + 8) i + (-6a + 24) j, ii) 12
) (За + 8) і + (-ба + 24) ј, in) 0
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)