Let a be a real number and f(x, y) 3ar'y+ 5xy3. Let v = 3i –j and let Vf(x, y) denote the gradient of f(x,y). %3D i) Find Vf(1, 1) in terms of a. – 12/5 ii) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is V2 find a. O i) (6a + 5) i + (3a + 15) j, ii) -4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Let a be a real number and f(x,y) = 3ax²y+ 5xy³.
Let v = 3i – j and let Vf(x, y) denote the gradient of f(x, y).
%3D
i) Find Vf(1, 1) in terms of a.
-12/5
ii) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is
V2
find a.
O i) (6a + 5) i + (3a + 15) j, ii) -4
O i) (6a + 5) i + (3a + 15) j, ii) -12
O i) (6a + 5) i + (3a + 15) j, ii) 12
O i) (6a + 5) i + (3a + 15) j, ii) 0
O i) (3a + 5) i + (-6a + 15) j, ii) -4
O i) (3a + 5) i + (-6a + 15) j, ii) -12
O i) (3a + 5) i + (-6a + 15) j, ii) 12
O i) (3a + 5) i + (-6a + 15) j, ii) 0
Transcribed Image Text:Let a be a real number and f(x,y) = 3ax²y+ 5xy³. Let v = 3i – j and let Vf(x, y) denote the gradient of f(x, y). %3D i) Find Vf(1, 1) in terms of a. -12/5 ii) If the rate of change of f(x, y) at the point (1, 1) in the direction of v is V2 find a. O i) (6a + 5) i + (3a + 15) j, ii) -4 O i) (6a + 5) i + (3a + 15) j, ii) -12 O i) (6a + 5) i + (3a + 15) j, ii) 12 O i) (6a + 5) i + (3a + 15) j, ii) 0 O i) (3a + 5) i + (-6a + 15) j, ii) -4 O i) (3a + 5) i + (-6a + 15) j, ii) -12 O i) (3a + 5) i + (-6a + 15) j, ii) 12 O i) (3a + 5) i + (-6a + 15) j, ii) 0
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,