Let A be a real 2×2 matrix with a complex eigenvalue A = a -bi (b 0) and an associated eigenvector v in C². a. Show that A(Re v) = a Re v +b Im v and A(Im v) = - b Re v +a Im v. [Hint: Write v = Re v +i Im v, and compute Av.] а -b ] 1 b. Verify that if A = PCP¯', where P = and C = b Re v Im v then AP = PC. a ..... a. If 1 = a - bi is an eigenvalue of A, corresponding to eigenvector v, then Av =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let A be a real 2x2 matrix with a complex eigenvalue 1 = a - bi (b 0) and an associated eigenvector v in C2.
a. Show that A(Re v) = a Re v +b Im v and A(Im v) = - b Re v +a Im v.
[Hint: Write v = Re v +i Im v, and compute Av.]
- b
a
and C =
1
b. Verify that if A = PCP¯', where P = Re v Im v
then AP = PC.
.....
a. If 1 = a - biis an eigenvalue of A, corresponding to eigenvector v, then Av =
Transcribed Image Text:Let A be a real 2x2 matrix with a complex eigenvalue 1 = a - bi (b 0) and an associated eigenvector v in C2. a. Show that A(Re v) = a Re v +b Im v and A(Im v) = - b Re v +a Im v. [Hint: Write v = Re v +i Im v, and compute Av.] - b a and C = 1 b. Verify that if A = PCP¯', where P = Re v Im v then AP = PC. ..... a. If 1 = a - biis an eigenvalue of A, corresponding to eigenvector v, then Av =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,