Let A = {Ba:a € A} be a family of sets and let G be a nonempty set. Prove U B.) = U(Gn B.) Order Sentences a. For the other direction, presume y E U. (G n Ba) а. b. y E G and y € B8 c. y E Gn (U.e Ba a € A d. æ € G and 3B E A, x € B3 e. æ € Ua e a (GN B.) f. 3B E A, y E G N B8 g. First, let æ E Gn ( Uaea Ba) A h. y E G and y E JBa a b i. æ € GN B3 e

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let A = {Ba:a € A} be a family of sets and let G be a nonempty set. Prove
GnU B.) = U(GN B.)
Order
Sentences
a. For the other direction, presume y E U. (G n Ba)
a €.
b. y E G and y € B8
c. y E Gn (U.e Ba
a € A
d. æ € G and 3B E A, x € B3
e. æ € Ua e a
(GN B.)
f. 3B E A, y E G N B8
g. First, let æ E Gn ( Uaea Ba)
A
h. y € G and y E JBa
a
b
i. æ € GN Bg
d
e
f
Submi
g
h
Transcribed Image Text:Let A = {Ba:a € A} be a family of sets and let G be a nonempty set. Prove GnU B.) = U(GN B.) Order Sentences a. For the other direction, presume y E U. (G n Ba) a €. b. y E G and y € B8 c. y E Gn (U.e Ba a € A d. æ € G and 3B E A, x € B3 e. æ € Ua e a (GN B.) f. 3B E A, y E G N B8 g. First, let æ E Gn ( Uaea Ba) A h. y € G and y E JBa a b i. æ € GN Bg d e f Submi g h
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,