Let A, B E Rnxn and let R[x] be the set of all polynomials in variable x with coefficients in R. Definition 1: For any p(x) = 0 C₂x² € R[x] define the "evaluation of p(x) at A" as vi=0 p(A) := k Σ c₁A¹ = c₂A¹ + Ck−1A² i=0 ++C₁A+ coIn, (here Aº = In). = Definition 2: Two matrices A, B E Rnxn are said to commute if AB = BA. Let A, B € Rnxn be similar. Show that for any polynomial p(x) = R[x] that p(A) and p(B) are similar. Specifically, show that if B = Q-¹AQ, then p(B) = Q¯¹p(A)Q. (

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( A, B \in \mathbb{R}^{n \times n} \) and let \( \mathbb{R}[x] \) be the set of all polynomials in variable \( x \) with coefficients in \( \mathbb{R} \).

**Definition 1:** For any \( p(x) = \sum_{i=0}^{k} c_i x^i \in \mathbb{R}[x] \), define the "evaluation of \( p(x) \) at \( A \)" as

\[
p(A) := \sum_{i=0}^{k} c_i A^i = c_k A^k + c_{k-1} A^{k-1} + \cdots + c_1 A + c_0 I_n,
\]

(here \( A^0 := I_n \)).

**Definition 2:** Two matrices \( A, B \in \mathbb{R}^{n \times n} \) are said to commute if \( AB = BA \).

Let \( A, B \in \mathbb{R}^{n \times n} \) be similar. Show that for any polynomial \( p(x) \in \mathbb{R}[x] \) that \( p(A) \) and \( p(B) \) are similar. Specifically, show that if \( B = Q^{-1} A Q \), then \( p(B) = Q^{-1} p(A) Q \).
Transcribed Image Text:Let \( A, B \in \mathbb{R}^{n \times n} \) and let \( \mathbb{R}[x] \) be the set of all polynomials in variable \( x \) with coefficients in \( \mathbb{R} \). **Definition 1:** For any \( p(x) = \sum_{i=0}^{k} c_i x^i \in \mathbb{R}[x] \), define the "evaluation of \( p(x) \) at \( A \)" as \[ p(A) := \sum_{i=0}^{k} c_i A^i = c_k A^k + c_{k-1} A^{k-1} + \cdots + c_1 A + c_0 I_n, \] (here \( A^0 := I_n \)). **Definition 2:** Two matrices \( A, B \in \mathbb{R}^{n \times n} \) are said to commute if \( AB = BA \). Let \( A, B \in \mathbb{R}^{n \times n} \) be similar. Show that for any polynomial \( p(x) \in \mathbb{R}[x] \) that \( p(A) \) and \( p(B) \) are similar. Specifically, show that if \( B = Q^{-1} A Q \), then \( p(B) = Q^{-1} p(A) Q \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,