Let A, B, C be non-empty subsets of the universal set U such that (An B) CC. Prove that AC BUC.
Let A, B, C be non-empty subsets of the universal set U such that (An B) CC. Prove that AC BUC.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Math 135: HW 0
For this homework, use the following facts. If it is a definition, mention “by definition” or “by definition of XXX (e.g. even)”. If it is not a definition, you do NOT have to cite.
1. **Basic algebra**, such as \(2 + 2 = 4\), \(1 - 3 = -2\), \(2 \cdot 4 = 8\). This includes subtracting an integer, or dividing by a non-zero rational/real/complex number.
2. **Common knowledge of whether numbers are integer/rational**, e.g., \(\frac{1}{2}\) is not an integer, \(\pi\) is not rational, all integers are rational, all rational numbers are real, all real numbers are complex, etc.
3. **Associative law of addition**: \((a+b) + c = a + (b+c)\), and **associative law of multiplication**: \((ab)c = a(bc)\), for all \(a, b, c \in \mathbb{C}\).
4. **Commutative law of addition**: \(a + b = b + a\), and **commutative law of multiplication**: \(ab = ba\), for all \(a, b \in \mathbb{C}\).
5. **Distributive law**: For all \(a, b, c \in \mathbb{C}\), we have \((a+b)(c+d) = ac + ad + bc + bd\). In particular, \((a+b)^2 = a^2 + 2ab + b^2\).
6. An integer \(n\) is **even** if there exists an integer \(k\) such that \(n = 2k\).
7. An integer \(n\) is **odd** if there exists an integer \(k\) such that \(n = 2k + 1\).
8. All integers are either even or odd.
9. A real number \(x\) is **positive** if \(x > 0\), and **negative** if \(x < 0\).
10. All real numbers are either positive, negative, or 0.
11. Let \(A, B\) be subsets of a universal set \(U\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F382d69cf-ffe2-43c0-99c4-21bedf550518%2F9626c69c-d7a9-46af-b13b-3ddd965a73ad%2Flwmiykj_processed.png&w=3840&q=75)
Transcribed Image Text:### Math 135: HW 0
For this homework, use the following facts. If it is a definition, mention “by definition” or “by definition of XXX (e.g. even)”. If it is not a definition, you do NOT have to cite.
1. **Basic algebra**, such as \(2 + 2 = 4\), \(1 - 3 = -2\), \(2 \cdot 4 = 8\). This includes subtracting an integer, or dividing by a non-zero rational/real/complex number.
2. **Common knowledge of whether numbers are integer/rational**, e.g., \(\frac{1}{2}\) is not an integer, \(\pi\) is not rational, all integers are rational, all rational numbers are real, all real numbers are complex, etc.
3. **Associative law of addition**: \((a+b) + c = a + (b+c)\), and **associative law of multiplication**: \((ab)c = a(bc)\), for all \(a, b, c \in \mathbb{C}\).
4. **Commutative law of addition**: \(a + b = b + a\), and **commutative law of multiplication**: \(ab = ba\), for all \(a, b \in \mathbb{C}\).
5. **Distributive law**: For all \(a, b, c \in \mathbb{C}\), we have \((a+b)(c+d) = ac + ad + bc + bd\). In particular, \((a+b)^2 = a^2 + 2ab + b^2\).
6. An integer \(n\) is **even** if there exists an integer \(k\) such that \(n = 2k\).
7. An integer \(n\) is **odd** if there exists an integer \(k\) such that \(n = 2k + 1\).
8. All integers are either even or odd.
9. A real number \(x\) is **positive** if \(x > 0\), and **negative** if \(x < 0\).
10. All real numbers are either positive, negative, or 0.
11. Let \(A, B\) be subsets of a universal set \(U\).
![Let \( A, B, C \) be non-empty subsets of the universal set \( U \) such that \( (A \cap B)^c \subseteq C \). Prove that \( A \subseteq B \cup C \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F382d69cf-ffe2-43c0-99c4-21bedf550518%2F9626c69c-d7a9-46af-b13b-3ddd965a73ad%2Fxkz84y_processed.png&w=3840&q=75)
Transcribed Image Text:Let \( A, B, C \) be non-empty subsets of the universal set \( U \) such that \( (A \cap B)^c \subseteq C \). Prove that \( A \subseteq B \cup C \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)