Let {a, b, c} be a set of vectors in R5 defined by 1 -1 1 ; b= -1 a = С — 1 1 and define W by W = {x € IR° : x.a = 0, x b = 0 and x c = 0}- Compute dim(W).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

A bit stuck on steps 

Let \(\{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}\) be a set of vectors in \(\mathbb{R}^5\) defined by

\[
\mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}; \quad \mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}.
\]

and define \(W\) by

\[
W = \{ \mathbf{x} \in \mathbb{R}^5 : \mathbf{x} \cdot \mathbf{a} = 0, \; \mathbf{x} \cdot \mathbf{b} = 0 \text{ and } \mathbf{x} \cdot \mathbf{c} = 0 \}
\]

Compute \(\dim(W)\).
Transcribed Image Text:Let \(\{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}\) be a set of vectors in \(\mathbb{R}^5\) defined by \[ \mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}; \quad \mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}. \] and define \(W\) by \[ W = \{ \mathbf{x} \in \mathbb{R}^5 : \mathbf{x} \cdot \mathbf{a} = 0, \; \mathbf{x} \cdot \mathbf{b} = 0 \text{ and } \mathbf{x} \cdot \mathbf{c} = 0 \} \] Compute \(\dim(W)\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,