Let [a, b] and [c, d] be intervals satisfying [c, d] C [a, b]. Show that if f E R(a) over [a, b] then f € R(a) over [c, d].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
Let [a, b] and [c, d] be intervals satisfying [c, d] C [a, b]. Show that if f E R(a) over [a, b] then ƒ € R(a)
over [c, d].
Transcribed Image Text:Let [a, b] and [c, d] be intervals satisfying [c, d] C [a, b]. Show that if f E R(a) over [a, b] then ƒ € R(a) over [c, d].
Expert Solution
Step 1

Given that a, b and c, d are intervals satisfying

                                                                 c, da, b

we have to show that if   fR(α)  over  a, b then  fR(α)  over  c, d

now,

                                                                αc, dαa, b;   c, da, bfR(α)  over  a, b thenfR(α)  over  c, d

Again,

                                                              αa, bαc, d;   c, da, bfR(α)  over  c, d thenfR(α)  over  a, b

 

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,