Let A and B be matrices of the form: |b1 b12 b3 a 12 b21 b2 b23 A= B= b31 b32 b33 a21 a22 d13 b, b 42 43 Consider M(A) = BA (matrix multiplication). Is M(A) a linear transformation?

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please show work

**Matrix Multiplication and Linear Transformations**

Let A and B be matrices of the form:

Matrix A:

\[
A = \begin{pmatrix} 
a_{11} & a_{12} \\ 
a_{21} & a_{22} \\ 
a_{13} & a_{32} 
\end{pmatrix}
\]

Matrix B:

\[
B = \begin{pmatrix} 
b_{11} & b_{12} & b_{13} \\ 
b_{21} & b_{22} & b_{23} \\ 
b_{31} & b_{32} & b_{33} \\ 
b_{41} & b_{42} & b_{43} 
\end{pmatrix}
\]

Consider \( M(A) = BA \) (matrix multiplication).

Is \( M(A) \) a linear transformation?

**Discussion:**

The problem asks us to determine if the matrix multiplication \( M(A) = BA \) results in a linear transformation. Generally, a linear transformation satisfies two properties:

1. Additivity: \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \)
2. Homogeneity: \( T(c\mathbf{u}) = cT(\mathbf{u}) \)

Matrix multiplication itself is a linear operation. To check if \( M(A) \) is a linear transformation, we would verify that it adheres to these properties using the structure and elements of matrices A and B.
Transcribed Image Text:**Matrix Multiplication and Linear Transformations** Let A and B be matrices of the form: Matrix A: \[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{13} & a_{32} \end{pmatrix} \] Matrix B: \[ B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \\ b_{41} & b_{42} & b_{43} \end{pmatrix} \] Consider \( M(A) = BA \) (matrix multiplication). Is \( M(A) \) a linear transformation? **Discussion:** The problem asks us to determine if the matrix multiplication \( M(A) = BA \) results in a linear transformation. Generally, a linear transformation satisfies two properties: 1. Additivity: \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \) 2. Homogeneity: \( T(c\mathbf{u}) = cT(\mathbf{u}) \) Matrix multiplication itself is a linear operation. To check if \( M(A) \) is a linear transformation, we would verify that it adheres to these properties using the structure and elements of matrices A and B.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning