Let A = [ ã1 ...ān ] be an k x n-matrix. Here ā1,...,ān e R* are the column-vectors. Let E be an nvertible k × k-matrix, and EA = B, with B=[b.….n ]. Assume the vectors bi, ,...b, give a basis of the column space Col(B). Prove that the vectors ā¡ ,...ā, give a basis of the column space Col(A).
Let A = [ ã1 ...ān ] be an k x n-matrix. Here ā1,...,ān e R* are the column-vectors. Let E be an nvertible k × k-matrix, and EA = B, with B=[b.….n ]. Assume the vectors bi, ,...b, give a basis of the column space Col(B). Prove that the vectors ā¡ ,...ā, give a basis of the column space Col(A).
Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter4: Vector Spaces
Section4.5: Basis And Dimension
Problem 69E: Find a basis for R2 that includes the vector (2,2).
Related questions
Question
![Let A = [ ã1 ...ān ] be an k x n-matrix. Here ā1,...,ān e R* are the column-vectors. Let E be an
nvertible k × k-matrix, and
EA = B, with B=[b.….n ].
Assume the vectors bi, ,...b, give a basis of the column space Col(B). Prove that the vectors ā¡ ,...ā,
give a basis of the column space Col(A).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F734f4932-9c15-4e07-80c9-d54d94f3ad88%2F35dfdb5d-1ff2-4759-9594-0762cd94542b%2Fdqtl7xq_processed.png&w=3840&q=75)
Transcribed Image Text:Let A = [ ã1 ...ān ] be an k x n-matrix. Here ā1,...,ān e R* are the column-vectors. Let E be an
nvertible k × k-matrix, and
EA = B, with B=[b.….n ].
Assume the vectors bi, ,...b, give a basis of the column space Col(B). Prove that the vectors ā¡ ,...ā,
give a basis of the column space Col(A).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
![Elements Of Modern Algebra](https://www.bartleby.com/isbn_cover_images/9781285463230/9781285463230_smallCoverImage.gif)
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,