Let A = = 6 -1 0-5 and define T: R³ → R² by T(x) = Ax. 3 (a) Find the images under T of u = and v= 8 (b) Determine if c = is in the range of the transformation T. 3 (c) Determine if the transformation is one-to-one.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

(Only use elementary row operations and correct row operation notation.)

### Linear Transformation Example

Given the matrix \( A \) and the transformation \( T \):

\[ A = \begin{bmatrix} -3 & 0 & 6 \\ -1 & 0 & -5 \end{bmatrix} \]

Define the transformation \( T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) by \( T(x) = Ax \).

#### Problems:

(a) **Find the images under \( T \) of** 

\[ u = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix}. \]

(b) **Determine if** \( \mathbf{c} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \) **is in the range of the transformation** \( T \).

(c) **Determine if the transformation is** one-to-one.

### Solution Approach:

#### Part (a): Finding Images

To find the images of \( u \) and \( v \) under \( T \), compute \( T(u) = A \cdot u \) and \( T(v) = A \cdot v \).

\[ T(u) = A \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \]
\[ T(v) = A \cdot \begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix} \]

#### Part (b): Determine if \( \mathbf{c} \) is in Range

Check if there exists \( x \in \mathbb{R}^3 \) such that \( T(x) = Ax = \mathbf{c} \).

#### Part (c): One-to-One Transformation

The transformation \( T \) is one-to-one if and only if the kernel of \( A \) (i.e., the solution to \( A \cdot x = 0 \)) contains only the zero vector.

### Detailed Steps to Solve:

1. **Matrix Multiplication for (a):**

\[ T(u) = \begin{bmatrix} -3 & 0 & 6 \\ -1 & 0 & -5 \end{bmatrix} \cdot
Transcribed Image Text:### Linear Transformation Example Given the matrix \( A \) and the transformation \( T \): \[ A = \begin{bmatrix} -3 & 0 & 6 \\ -1 & 0 & -5 \end{bmatrix} \] Define the transformation \( T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) by \( T(x) = Ax \). #### Problems: (a) **Find the images under \( T \) of** \[ u = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix}. \] (b) **Determine if** \( \mathbf{c} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \) **is in the range of the transformation** \( T \). (c) **Determine if the transformation is** one-to-one. ### Solution Approach: #### Part (a): Finding Images To find the images of \( u \) and \( v \) under \( T \), compute \( T(u) = A \cdot u \) and \( T(v) = A \cdot v \). \[ T(u) = A \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \] \[ T(v) = A \cdot \begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix} \] #### Part (b): Determine if \( \mathbf{c} \) is in Range Check if there exists \( x \in \mathbb{R}^3 \) such that \( T(x) = Ax = \mathbf{c} \). #### Part (c): One-to-One Transformation The transformation \( T \) is one-to-one if and only if the kernel of \( A \) (i.e., the solution to \( A \cdot x = 0 \)) contains only the zero vector. ### Detailed Steps to Solve: 1. **Matrix Multiplication for (a):** \[ T(u) = \begin{bmatrix} -3 & 0 & 6 \\ -1 & 0 & -5 \end{bmatrix} \cdot
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,