Let A - = [5 2 0 -2 0-2 7 2 6 = PDPT where D = Compute (a) an orthogonal decomposition A decomposition of A, namely express A as the sum of rank 1 matrices A = \₁V₁V² + \2U₂U₁ + λ3Ú3V²¬ where P [V1 V2 V3] So that 7; are the normalized eigenvectors of A. Last, (c) write down QA(x) = ¹ Ar the quadratic form defined by A. 06 and (b) the spectral

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let

\[ A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & -2 \\ 0 & -2 & 7 \end{bmatrix} \]

Compute (a) an orthogonal decomposition \( A = PDP^T \) where \( D = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix} \), and (b) the spectral decomposition of \( A \), namely express \( A \) as the sum of rank 1 matrices

\[ A = \lambda_1 \vec{v_1} \vec{v_1}^T + \lambda_2 \vec{v_2} \vec{v_2}^T + \lambda_3 \vec{v_3} \vec{v_3}^T \]

where \( P = [\vec{v_1} \ \vec{v_2} \ \vec{v_3}] \) so that \( \vec{v_i} \) are the normalized eigenvectors of \( A \). Last, (c) write down \( Q_A(\vec{x}) = \vec{x}^T A \vec{x} \) the quadratic form defined by \( A \).
Transcribed Image Text:Let \[ A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & -2 \\ 0 & -2 & 7 \end{bmatrix} \] Compute (a) an orthogonal decomposition \( A = PDP^T \) where \( D = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix} \), and (b) the spectral decomposition of \( A \), namely express \( A \) as the sum of rank 1 matrices \[ A = \lambda_1 \vec{v_1} \vec{v_1}^T + \lambda_2 \vec{v_2} \vec{v_2}^T + \lambda_3 \vec{v_3} \vec{v_3}^T \] where \( P = [\vec{v_1} \ \vec{v_2} \ \vec{v_3}] \) so that \( \vec{v_i} \) are the normalized eigenvectors of \( A \). Last, (c) write down \( Q_A(\vec{x}) = \vec{x}^T A \vec{x} \) the quadratic form defined by \( A \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,