Let A = 0 00 G|5 0 0 0 , u = 1|5 15 10 - 25 and v= g d h Define T: R³ R³ by T(x) = Ax. Find T(u) and T(v). →>>

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

PLEASE PLEASE do both PLease!!! 

THANKS!!!

**Linear Algebra: Transformations**

Let \( A = 
\begin{bmatrix}
\frac{1}{5} & 0 & 0 \\
0 & \frac{1}{5} & 0 \\
0 & 0 & \frac{1}{5} \\
\end{bmatrix}
\), \( u = 
\begin{bmatrix}
15 \\
10 \\
-25 \\
\end{bmatrix}
\), and \( v = 
\begin{bmatrix}
g \\
d \\
h \\
\end{bmatrix}
\).

Define \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) by \( T(x) = Ax \).

Find \( T(u) \) and \( T(v) \).

**Calculation**

\[ T(u) = \_\_\_\_\_\_\_\_\_\_\_\_\_ \]

(Simplify your answer. Use integers or fractions for any numbers in the expression.)
Transcribed Image Text:**Linear Algebra: Transformations** Let \( A = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{5} \\ \end{bmatrix} \), \( u = \begin{bmatrix} 15 \\ 10 \\ -25 \\ \end{bmatrix} \), and \( v = \begin{bmatrix} g \\ d \\ h \\ \end{bmatrix} \). Define \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) by \( T(x) = Ax \). Find \( T(u) \) and \( T(v) \). **Calculation** \[ T(u) = \_\_\_\_\_\_\_\_\_\_\_\_\_ \] (Simplify your answer. Use integers or fractions for any numbers in the expression.)
**Determine if** \( v \) **is in the set spanned by the columns of** \( B \).

\[
B = \begin{bmatrix}
3 & -3 & 2 \\
9 & -7 & 9 \\
6 & 0 & 15 \\
9 & -5 & 16 \\
\end{bmatrix}
\]

\[
v = \begin{bmatrix}
-12 \\
-20 \\
24 \\
-4 \\
\end{bmatrix}
\]

---

**Choose the correct answer below and, if necessary, fill in the answer box(es) to complete your choice.**

- \( \textcircled{A} \) Vector \( v \) is not in the set spanned by the columns of \( B \) because the columns of \( B \), \( b_1 \), \( b_2 \), and \( b_3 \) are linearly independent. 

- \( \textcircled{B} \) Vector \( v \) is in the set spanned by the columns of \( B \) because the columns of \( B \) span \(\mathbb{R}^4 \).

- \( \textcircled{C} \) Vector \( v \) is not in the set spanned by the columns of \( B \) because the reduced echelon form of the matrix formed by writing \( B \) with a fourth column equal to \( v \) is \(\square\).

- \( \textcircled{D} \) Vector \( v \) is in the set spanned by the columns of \( B \) because \(\square b_1 + \square b_2 + \square b_3 = v \).
Transcribed Image Text:**Determine if** \( v \) **is in the set spanned by the columns of** \( B \). \[ B = \begin{bmatrix} 3 & -3 & 2 \\ 9 & -7 & 9 \\ 6 & 0 & 15 \\ 9 & -5 & 16 \\ \end{bmatrix} \] \[ v = \begin{bmatrix} -12 \\ -20 \\ 24 \\ -4 \\ \end{bmatrix} \] --- **Choose the correct answer below and, if necessary, fill in the answer box(es) to complete your choice.** - \( \textcircled{A} \) Vector \( v \) is not in the set spanned by the columns of \( B \) because the columns of \( B \), \( b_1 \), \( b_2 \), and \( b_3 \) are linearly independent. - \( \textcircled{B} \) Vector \( v \) is in the set spanned by the columns of \( B \) because the columns of \( B \) span \(\mathbb{R}^4 \). - \( \textcircled{C} \) Vector \( v \) is not in the set spanned by the columns of \( B \) because the reduced echelon form of the matrix formed by writing \( B \) with a fourth column equal to \( v \) is \(\square\). - \( \textcircled{D} \) Vector \( v \) is in the set spanned by the columns of \( B \) because \(\square b_1 + \square b_2 + \square b_3 = v \).
Expert Solution
steps

Step by step

Solved in 3 steps with 15 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,