Let 7= X1 Describe all solutions of a₁₁ + a₂2 +33 + 44 = Ō. I2 X3 C4 18 = x2 13 ā₂ - [3]₁03 = [27], ₁ = [15] a3 +23 +4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let 

\[
\vec{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \,
\vec{a}_2 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \,
\vec{a}_3 = \begin{bmatrix} -9 \\ 27 \end{bmatrix}, \,
\vec{a}_4 = \begin{bmatrix} 5 \\ 15 \end{bmatrix}
\]

Describe all solutions of \(\vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3 + \vec{a}_4 x_4 = \vec{0}\).

\[
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 
\begin{bmatrix} \, \\ \, \\ \, \\ \, \end{bmatrix} + x_3 
\begin{bmatrix} \, \\ \, \\ \, \\ \, \end{bmatrix} + x_4 
\begin{bmatrix} \, \\ \, \\ \, \\ \, \end{bmatrix}
\]

This is a linear algebra problem asking to describe all solutions to a linear combination of vectors equaling the zero vector. The vectors \(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4\) are given, and each has a scalar \(x_i\) that represents its contribution to the solution.

The augmented equation and the empty columns suggest constructing a set of solutions based on the free variables \(x_2, x_3, x_4\).
Transcribed Image Text:Let \[ \vec{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \, \vec{a}_2 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \, \vec{a}_3 = \begin{bmatrix} -9 \\ 27 \end{bmatrix}, \, \vec{a}_4 = \begin{bmatrix} 5 \\ 15 \end{bmatrix} \] Describe all solutions of \(\vec{a}_1 x_1 + \vec{a}_2 x_2 + \vec{a}_3 x_3 + \vec{a}_4 x_4 = \vec{0}\). \[ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} \, \\ \, \\ \, \\ \, \end{bmatrix} + x_3 \begin{bmatrix} \, \\ \, \\ \, \\ \, \end{bmatrix} + x_4 \begin{bmatrix} \, \\ \, \\ \, \\ \, \end{bmatrix} \] This is a linear algebra problem asking to describe all solutions to a linear combination of vectors equaling the zero vector. The vectors \(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4\) are given, and each has a scalar \(x_i\) that represents its contribution to the solution. The augmented equation and the empty columns suggest constructing a set of solutions based on the free variables \(x_2, x_3, x_4\).
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,