Let -4x³ - 2y³ - 3x3 + 2xyz — 322 = 0. дz Oz Use partial derivatives to calculate and at the point (-3,-5, -2). Әх ду Oz дx (-3,-5,-2) Oz ду (-3,-5,-2) -
Let -4x³ - 2y³ - 3x3 + 2xyz — 322 = 0. дz Oz Use partial derivatives to calculate and at the point (-3,-5, -2). Әх ду Oz дx (-3,-5,-2) Oz ду (-3,-5,-2) -
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Question 14**
Let \(-4x^3 - 2y^3 - 3z^3 + 2xyz = 322\).
Use partial derivatives to calculate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((-3, -5, -2)\).
\[
\left[ \frac{\partial z}{\partial x} \right]_{(-3,-5,-2)} = \_\_\_\_\_\_
\]
\[
\left[ \frac{\partial z}{\partial y} \right]_{(-3,-5,-2)} = \_\_\_\_\_\_
\]
Question Help: [Video]
[Submit Question]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8a3f3121-07ef-4e2d-8122-d3ccd0e5a601%2F35e81a67-e5a1-46ed-924d-e65af983f232%2Fgmndz5_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Question 14**
Let \(-4x^3 - 2y^3 - 3z^3 + 2xyz = 322\).
Use partial derivatives to calculate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((-3, -5, -2)\).
\[
\left[ \frac{\partial z}{\partial x} \right]_{(-3,-5,-2)} = \_\_\_\_\_\_
\]
\[
\left[ \frac{\partial z}{\partial y} \right]_{(-3,-5,-2)} = \_\_\_\_\_\_
\]
Question Help: [Video]
[Submit Question]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

