Let (2) be the number of prime numbers in the range from 2 to x. Tπ Select the pair of inequalities that are both true. O T(1000) ≤ (10000) T(1000) 1000 O T(10000) 10000 T(1000) ≤ (10000) T(1000) 1000 TT (10000) 10000 T(1000) ≥T(10000) π(10000) T(1000) 1000 10000 π(1000) ≥ π(10000) T(1000) 1000 π(10000) 10000

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Discrete Math
Let \(\pi(x)\) be the number of prime numbers in the range from 2 to \(x\). Select the pair of inequalities that are both true.

1. 
   \[
   \pi(1000) \leq \pi(10000)
   \]
   \[
   \frac{\pi(1000)}{1000} \leq \frac{\pi(10000)}{10000}
   \]

2. 
   \[
   \pi(1000) \leq \pi(10000)
   \]
   \[
   \frac{\pi(1000)}{1000} \geq \frac{\pi(10000)}{10000}
   \]

3. 
   \[
   \pi(1000) \geq \pi(10000)
   \]
   \[
   \frac{\pi(1000)}{1000} \leq \frac{\pi(10000)}{10000}
   \]

4. 
   \[
   \pi(1000) \geq \pi(10000)
   \]
   \[
   \frac{\pi(1000)}{1000} \geq \frac{\pi(10000)}{10000}
   \]
Transcribed Image Text:Let \(\pi(x)\) be the number of prime numbers in the range from 2 to \(x\). Select the pair of inequalities that are both true. 1. \[ \pi(1000) \leq \pi(10000) \] \[ \frac{\pi(1000)}{1000} \leq \frac{\pi(10000)}{10000} \] 2. \[ \pi(1000) \leq \pi(10000) \] \[ \frac{\pi(1000)}{1000} \geq \frac{\pi(10000)}{10000} \] 3. \[ \pi(1000) \geq \pi(10000) \] \[ \frac{\pi(1000)}{1000} \leq \frac{\pi(10000)}{10000} \] 4. \[ \pi(1000) \geq \pi(10000) \] \[ \frac{\pi(1000)}{1000} \geq \frac{\pi(10000)}{10000} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,