Let 2 (-1)** 'ak be a convergent alternating series with terms that are nonincreasing in magnitude. Let R, = S-S, be the remainder in approximating the value of that series by the sum of k=1 its first n terms. Then R,san+1. In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term. For the convergent alternating series (-1)% -, evaluate the nth partial sum for n=2. Then find an upper bound for the error s-S, in using the nth partial sum S, to estimate the value of the series S. 00 k=0 (6k + 1)*

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I understand how to find the nth partial sum for n=2.  But the second part of finding the upper bound for the error isn't working out for me.  Can you explain clearly how to do that?  I thought I just took n=2+1 or n=3 and then used that value for k, but the system says that's not the right answer.

Let 2 (-1)**'ak be a convergent alternating series with terms that are nonincreasing in magnitude. Let R, = S-S, be the remainder in approximating the value of that series by the sum of
k=1
its first n terms. Then R,san+ 1. In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term. For the convergent alternating series
(-1)%
-, evaluate the nth partial sum for n=2. Then find an upper bound for the error s-S, in using the nth partial sum S, to estimate the value of the series S.
00
k=0 (6k + 1)
Transcribed Image Text:Let 2 (-1)**'ak be a convergent alternating series with terms that are nonincreasing in magnitude. Let R, = S-S, be the remainder in approximating the value of that series by the sum of k=1 its first n terms. Then R,san+ 1. In other words, the magnitude of the remainder is less than or equal to the magnitude of the first neglected term. For the convergent alternating series (-1)% -, evaluate the nth partial sum for n=2. Then find an upper bound for the error s-S, in using the nth partial sum S, to estimate the value of the series S. 00 k=0 (6k + 1)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,